Introduction

Ice algae
- 1º pulse of spring photosynthetic production
 - Supports Arctic food-web
 - Produce essential fatty acids
 - Poly-unsaturated (PUFA)
 - Saturated

Light & Nutrient Limited
- "Light & Nutrients:" Lipids & Protein

Diatoms
- Class Bacillariophyceae
- Encased in silica frustule
- Pennate & Centric

Fourier Transform Infrared (FTIR) Spectrochemical Analysis
- Measures biomolecular (biomass) composition
 - PUFA
 - Total Lipids (CH$_2$CH$_3$)
 - Proteins (Amide I)
 - Silica (Si-O)

Tidal straits hypothesis
- Shallow, narrow water ways
- Increased water column mixing, Therefore: increased nutrient flux

GOAL: Determine the influence of light & nutrient availability on biomass composition of individual Arctic diatom cells compared to bulk-community biomass & species composition

I. Use FTIR to examine biomass composition (PUFA, total lipids, & protein), in individual cells of different diatom taxa; compare to bulk algal community

II. Compare FTIR-derived biomass to bulk measurements (e.g. Chl a, organic C & N, etc.), & taxonomic composition

III. Relate changes in biomass to nutrient fluxes, location in tidal strait & penetration depth in bottom fine structure of sea ice

Field Work & Sample Collection

- Finlasyon Islands, Dease Strait, near Cambridge Bay, NU, CA
- 26 April to 12 May 2017

Fine Structure
- Sites #: 1 – 4
 - Thin Snow Cover (< 8 cm)
 - Bottom: 0-2, 2-5, & 5-10 cm
 - Cells filtered onto a poly-carbonate filter
 - Store @ -80°C; prep on dry ice

Transmission Mode FTIR – Individual Biomass
- Light passes through sample + substrate, BaF$_2$
- Wavelengths = vibrational energies of functional groups are absorbed
- IR spectrum:
 - Processed in MATLAB™

Biomolecular Analysis
- Agilent Cary 670 IR Spectrometer & 620 IR Microscope:
 - Global Light Source
 - 64 x 64 pixel FPA detector
 - 15x (0.62NA) optics
 - 1.1 x 1.1 µm2 pixel (projection)

Sample Preparation for PUFA - Lights Out!!
- Filters sectioned in dark
- Cells released onto a BaF$_2$ windows, with Milli-Q water (4 µl drop)
- I.D. taxa under light microscope with red light filter (650 nm)
- Samples dried in desiccant chamber overnight (~12 hrs), in dark
- Analysed next day, in darkened room

Finding PUFA
- PUFA Band: 3006 cm$^{-1}$ (red arrow)
- Low T + 650nm filter & dark room prevents photo-oxidation of PUFA
- Navicula genus has been observed to have the greatest quantity of PUFA

Preliminary Results

Nitzschia frigida
- Light = constant
- Lipids increase (site 1 to 4)
 - Variability between ice sections
 - Proteins decrease (site 1 to 4)
- Ratio Pattern
 - Normalizes lipids & proteins across all sites
 - Reflects increased nutrient stress, with high lipid & low protein
 - Greater, further from site 1

Bulk-Community Biomass Composition Analysis
- Attenuated Total Reflectance (FTIR-ATR)
 - Light passes through crystal in contact with sample
 - Creates an evanescent wave, penetrates sample by few microns

Next Steps...

Acknowledgments

This work was supported by funding the Northern Scientific Training Program (NSTP) to Mundy, NSERC operating grants to CAO and NSERC-Polar Knowledge Canada (CKANC) is thanked for in-kind logistical support. Special thanks are extended to the Dalvakinak Hunters and Trappers Organization and residents of Cambridge Bay for their support of the ICE-CAMS field program. This is a contribution to the programs of NSERC, Antartic, Arctic Science Partnership and the Canada Excellence Research Chair unit at CEOS.