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Context _ Objectives

Due to overall ice coverage decrease caused by warmer air
and ocean temperatures, a regime shift (Fig 1a) in Arctic
macroalgal communities has since been observed, where 1

, _ Fluorescence
brown and red macroalgae (Fig 1c) are seen covering or "
replacing encrusting algae and sessile organisms (Fig 1b)
(Svalbard)!. Increased light availability to the benthic 5 V) W I
environment is also believed to contribute to this change . "

Remote detection of photosynthetic organisms (i.e.
phytoplankton) via light stimulated fluorescence is well
understood, where fluorescence signal intensity can be linked to
in water chlorophyll a (chl-a) concentration. Macroalgae,
however are different in their 3-D morphology (e.g. blade,
filament), surface characteristics (e.g. flat, rough) and packaging
of chl-a, factors possibly affecting fluorescence and absorption
return signals when observed by remote methods.

; Following the AUV LiDAR approach (Fig 4), macroalgae must
£ be studied whole. Hence, we initially attempt to characterize
8 Fig 1b : their fluorescence properties as encountered by our LiDAR. Our
%’ 5 initial approach is to investigate fluorescence response Vvia
g 5 spectrofluorometry analyses on macroalgae samples.

, , _ We describe the response to multiple wavelengths of light to
Fig 4. Sentinel North subproject 2.7: Development of an underwater uide LIDAR component selection (e.g. | \ = 473
. . . . . g .g. laser source A = nm,
G Fig 1a .- scanning LiDAR built for integration onto an Autonomous Underwater A\=532nm), as well as better understand how target structure
B\ Vehicle (AUV) for the study of benthic and under-ice substrates by may influe'nce fluorescence detection
1Kortsch, S et al. 2012. “Climate-Driven Regime Shifts in Arctic Marine e i ‘ . . . . . .
Benthos.” PVAS 109, no. 35 (August 28, 2012): 14052-57. Newly recruited macroalgae (circled) their fluorescence and differential absorption (DIAL) properties
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_ surrounding the sample), and possible reabsorption by chl-a at 675 nm (see chl-a - Theory) of initially emitted
Absorption and scattering within the structure (A/ar;'r:siﬁenm) A arcu(;:nfrlzxosum) fluorescence + reemission at 705-730 nm are thought to be observed. This latter phenomenon appears to result in a
and medium (water) can also affect observed iMM) J visible shift + widening of the fluorescence emission band, and reduces total fluorescence energy.

minimally  reabsorbed in
simple structures (left

figure). fluorescence (light reabsorbed and energy
reduced).
|V. Experimental Setup effects U . Polarized reflectance / retroreflection ideas
p C O m I n g n i e g s
Fluorescence signal detection and intensity may be affected by experimental conditions. For example, the path :ﬁ?‘flfpfi';i'.?"’“
length of light through water in and surrounding a sample: a long path length equals more absorption and less Laser benchtop experiments on live samples! N 752 skt vy
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