Characterize abundance, richness and diversity of dinoflagellate communities in high risk ports of the Canadian Arctic Fatma.dhifallah@uqar.ca

Fatma Dhifallah¹, André Rochon¹, Kimberly Howland², Nathalie Simard³ ¹Institut des sciences de la mer de Rimouski (ISMER), Université du Québec à Rimouski, QC, Canada ²Fisheries and Oceans Canada, Arctic Research Division, Winnipeg, MN, Canada ³Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, QC, Canada

Fisheries and Ocea Pêches et Océans Canada Canada

Savoir polaire Canada

norvogica of Alexandrium on

1. INTRODUCTION

Shipping activities in the Canadian Arctic are expected to increase due to global warming (sea ice reduction) and economic development. This increase is expected to enhance the risk for introduction of **nonindigenous** species via **ballast water** and biofouling vectors.

NSERC CRSNG

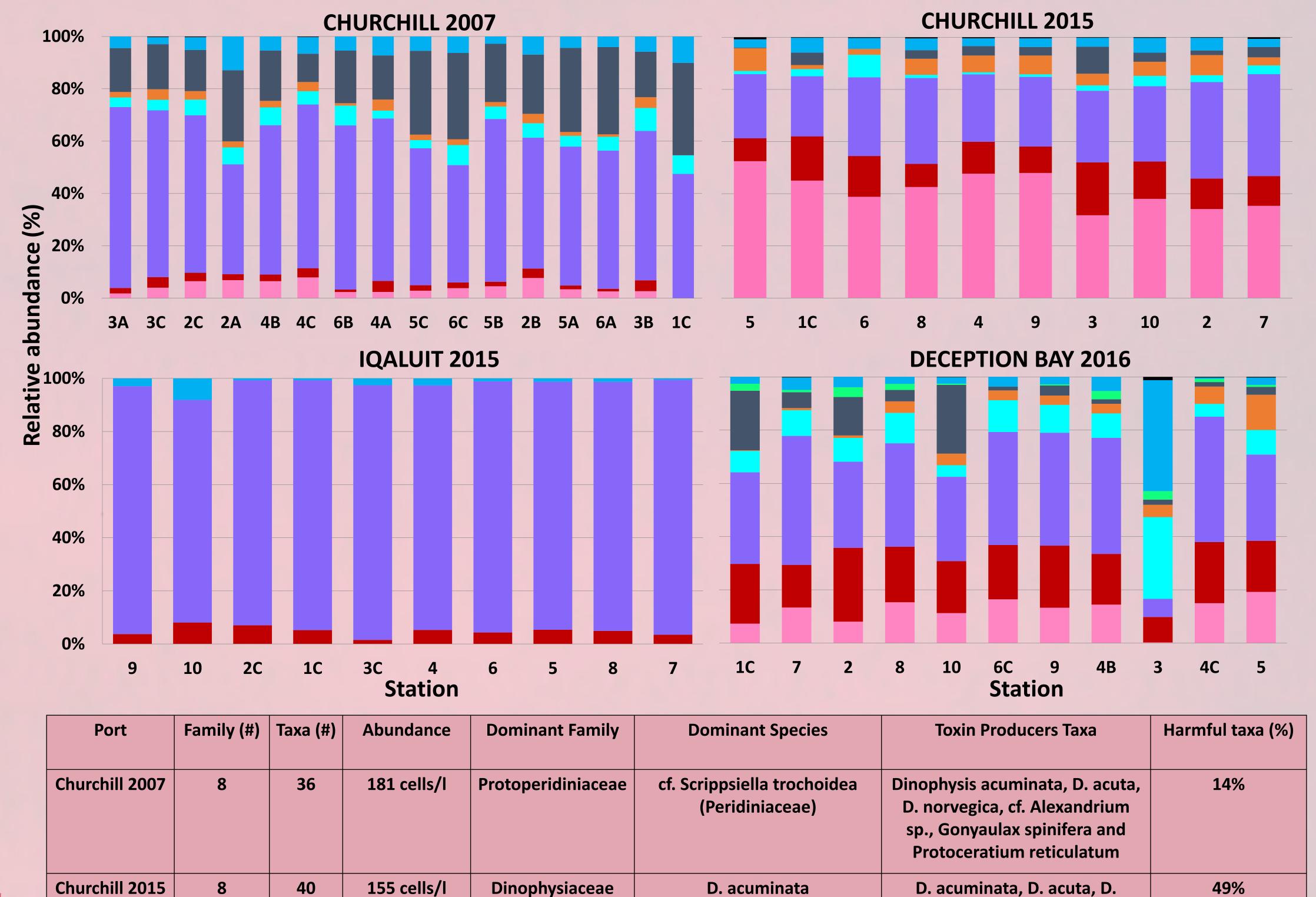
ArcticNet

INVASION PROCESS STAGES (Hallegraeff, 1998)

SURVIVAL

Iqaluit (NU)

Deception Bay (QC)


ESTABLISHMENT

Ballast uptake Survive transport conditions in ballast ARRIVAL (low oxygen, lack of light, predation)

4. PRELIMINARY RESULTS

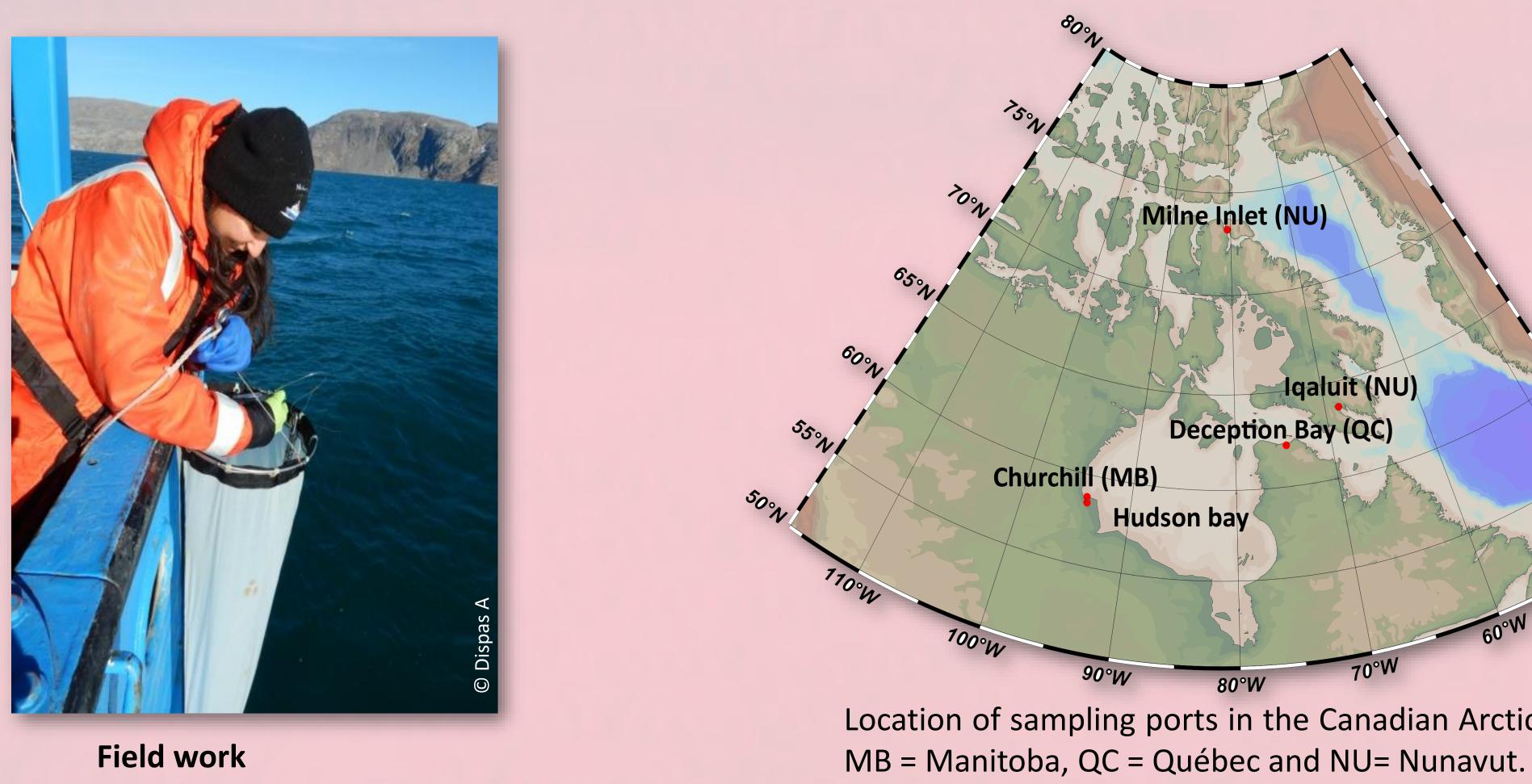
TAXONOMIC COMPOSITION

Dinophysiaceae Diplopsaliaceae Ceratiaceae Gonyaulacaceae Cladopyxidaceae Protoperidiniaceae Peridiniaceae Actiniscaceae Unidentified

(Dinonhysiacoao)

(IU	w oxygen, lack of light, predation	
> De	-ballasting	
> Rel	lease In the new environnement	
> Rej	produce and establish	
> Spr	read	

Dinoflagellates may survive in ballast tanks during voyages and reproduce after their release in destination ports. The capacity to produce resistant cysts (15% of dinoflagellates) increases their chances for survival, reproduction and invasion.


- **Dinoflagellates** can be responsible for important ecological and economic impacts on the ecosystems once released in a new environment (Casas-Monroy et al. 2016):
- Cause hypoxia in surface waters;
- Produce harmful blooms;
- > Produce toxins that could be accumulated in filtered feeders (e.g, bivalves) and fishes, transferred through food chain and be lethal to marine fauna or humans;
- Cause important income losses to the aquaculture industry.

2. OBJECTIVES

- > Characterize abundance, richness and diversity of dinoflagellate communities in high risk Canadian Arctic ports to provide baseline data and detect the presence of potential nonindigenous species Compare the communities of dinoflagellate sampled in 2007 and 2015 in Churchill

3. METHODS

Study Area. Samples were collected in the Canadian Arctic in August in the ports of Churchill (MB) in 200 2015, Iqaluit (NU) in 2015, Deception Bay (QC) in 2016, and Milne Inlet (NU) in 2017.

Vertical profile of temperature and salinity using a CTD;

					(Dinophysiaceae)				G. spinifera a		
007 and	Iqaluit	2	7	46 cells/l	Protoperidiniaceae Protoperidinium bi (Protoperidiniacea					5%	
	Deception Bay	8	47	127 cells/l	Protoperidinia	ceae	Protoperidinium bre (Protoperidiniace	-	D. acumina norvegica, cf. G. spinifera a	30%	
	Milne Inlet	port 2007	: ongoi	ng analysis							
									DI		
						Popper of				J' (Evenness)	H'(Shannon Wiener)
Strate and	C	f. Alexandriu	ım	Gonyaulax s	pinifera Pr	otocer	atium reticulatum	Dee	ception Bay	0.859	2.9629
								Chu	urchill 2015	0.794	2.579
								Chu	urchill 2007	0.782	2.380
50°W	Dinophysis acu	ta Dinop	hysis rotu	undata Dinop	ohysis acumina	ta D	inophysis norvegica		Iqaluit	0.427	0.643
W CiC. t.	cf. Scri	ppsiella tro	choidea	Protoperidini	um brevipes	Protop	eridinium bipes	> DI	B diversity ir	ndex > Churchi	ll > Iqaluit.

Micrographs of selected taxa identified in all samples. The text in red indicates the six toxin producer taxa present in the samples. Scale bar = 10µm.

Photic zone depth determined using a Secchi disk;

 \succ Vertical plankton net (Nitex[®] 20 μ m) from the bottom to the surface to collect dinoflagellate samples; \succ Concentrated samples preserved with formaldehyde solution (4%).

Laboratory

> Samples analyzed based on the Utermöhl method (Utermöhl, 1958) using a NIKON Eclipse TE-2000 inverted microscope at 200 X magnification; Sub samples of 300-500 cells enumerated and identified.

5. CONCLUSION

The preliminary results indicate that dinoflagellate communities are different in each port. Statistical tests are underway for validation. We will also investigate the influence of environmental factors on species composition among ports and examine correspondence between dinoflagellate communities found in ballast water with the results of the present work.

ACKNOWLEDGEMENTS We want to thank Baffinland and Raglan mines and ship crews for their support. We are grateful to local community members. DFO and university collaborators who participated to sampling collections. This project is funded by Polar Knowledge Canada, Natural Sciences and Engineering Research Council of Canada, Nunavut Wildlife Management Board, DFO AIS Monitoring Program and Polar Continental Shelf Program.

REFERENCES

Casas-Monroy, O., Linley, R.D., Adams, J.K., Chan, F.T., Drake, D.A.R., and Bailey, S.A. 2014. National Risk Assessment for Introduction of Aquatic Non indigenous Species to Canada by Ballast Water. DFO Can. Sci. Advis. Sec. Res. Doc. 2013/128. vi + 73 p. Casas-Monroy, O., Parenteau, M., Drake, D.A.R., Roy.S., Rochon, A. 2016. Absolute estimates of the propagule pressure of viable dinoflagellates across Canadian coasts: the variable influence of ballast water exchange. 163: 174. Hallegraeff, G.M. 1998. Transport of toxic dinoflagellates via ships' ballast water: bioeconomic risk assessment and efficacy of possible ballast water management strategies. Marine Ecology Progress Series, 168, 297-309. Utermöhl, H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilung/Internationale Verein Theor Angew Limnol 9:1–38