

Fundamentals and Applications of Metallocene Polyethylene

Rajen Patel
Dow Chemical Company
Freeport, Texas

SPE Polyolefins Conference Tutorial, 2019

Polyethylene – Simple yet complex

Polyethylene is composed of only carbon and hydrogen (with some exceptions), which can be combined in number of ways to make many different types of polyethylenes.

Polyethylene – Key innovations timeline

History of metallocene (homogeneous) polyethylene

- Metallocene catalyst for ethylene polymerization first described 1957
- ☐ Elston (DuPont) homogeneous PE patent (US #3,645,992 using V catalyst) 1972
- □ Catalyst breakthrough by Prof. Walter Kaminsky and his group (MAO as an activator) to significantly improve catalyst efficiency 1980
- Dow and ExxonMobil led commercialization of homogeneous PE using Substituted mono-cyclopentadienyl catalyst (Constrained Geometry Catalyst) and dicyclopentadienyl (BisCp) catalyst, respectively 1991-1993
 - Polyolefins Plastomers (POP) and Polyolefins Elastomers (POE)
- Dow, ExxonMobil and Chevron-Phillips led commercialization of metallocene/post-metallocene (single-site) catalyst based mLLDPE in late 1990's.

Key processes to make single-site catalyzed polyethylenes

- **□** Solution
- ☐ Gas Phase
- **□** Slurry

Solution process - simplified

^{*} Patel – "Chapter 2 - Polyethylene" – Multi-layer Flexible Packaging Book - Elsevier (2016)

Slurry-phase process

Fig. 22. Schematic of slurry-phase polymerization process.

* Simpson and Vaughan – "Ethylene Polymers, LLDPE" - Encyclopedia of Polymer Science and Technology

Multi-site vs. single-site catalysts

Traditional LLDPE/VLDPE are made using multi-Site catalyst (Z-N)

Polyolefin Plastomers/Elastomers and mLLDPE are made using single-site (metallocene & post-metallocene) catalyst

Structural differences between LDPE, Z-N LLDPE and Single-site catalyzed LLDPE*

^{*} Simpson and Vaughan – "Ethylene Polymers, LLDPE" - Encyclopedia of Polymer Science and Technology

GPC Molecular Weight Distribution (MWD) <u>Homogeneous (single-site catalyzed)</u> vs. Heterogeneous (Z-N catalyzed)

Short Chain Branching (Composition) Distribution <u>Homogeneous (single-site catalyzed)</u> vs. Heterogeneous (Z-N catalyzed)

DSC Melting Endotherms

Cooled and Heated at 10 °C/min

Perkin-Elmer DSC-7

Why metallocene PE was a revolution?

- ☐ Ideal molecular structure (narrow MWD, narrow composition distribution)
- \square Low T_m & hexane extractable for food packaging applications (sealant)
- High hot-tack vs. EVA (Sealant)
- Improved thermal/UV stability vs. EVA
- \square Ability to make ethylene copolymers (C_4 - C_8) below 0.885 g/cc
- Ethylene-based elastomer in pellet form vs. EPDM bales
- Excellent dart impact and puncture vs. Z-N LLDPE
- Excellent optics vs. Z-N LLDPE

Polyolefin Plastomer (POP) and Elastomer (POE)

- POP 0.910 g/cc to 0.885 g/cc
- POE 0.885 g/cc to 0.857 g/cc
- Attributes of POP and POE
 - Better Optical Properties
 (Clarity, Haze & Gloss)
 - Lower T_m and Heat Seal Temperature
 - Better Hot Tack (compared to EVA)
 - Very low modulus and Tg (POE)
 - Better Elastic Properties (POE)

Key applications of Polyolefins Plastomers (POP) and Elastomers (POE)

- Sealants
 - Excellent hot-tack strength (VFFS) and low seal temperatures for faster packaging line speeds
- Breathable food packaging
 - fresh cut produce (high OTR)
- Impact modification of polypropylene
 - Elastomers @ ~ 0.87 g/cc (low temp., ~ -30°C impact application of PP)
- Hot melt adhesive (HMA)
- Molded soft goods
- Photovoltaic encapsulant Films
- Elastic laminates

AFFINITYTM High Performance Sealants

Sealants – Mechanism & performance requirements

- Low seal initiation temperature (SIT)/High heat seal strength
- High hot-tack strength/Broad hot-tack window
- Good caulkability to give hermetic seals
- Excellent taste & odor properties

DSC Melting Endotherms

Heat Flow (Watts/gm)

Melting Peak vs. Density

DSC of Homogeneous (AFFINITY™ POP) vs. Heterogeneous (ATTANE™ VLDPE) PE

Heat Flow (Watts/gram)

0.902 g/cc

ATTANE 4203 0.905 g/cc

- Significantly lower T_m at similar density
- Explains why Plastomer is a better sealant than Z-N VLDPE

®™Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow

Hot-tack strength of Plastomers vs. EVA

Hot-tack Strength (N/inch)

Plastomers have excellent hot-tack strength compared to EVA, i.e. for VFFS applications. Enables improved package integrity and efficiency.

Keys to commercial success

- ☐ Compelling value propositions across the value chain
 - Co-packers/Brand Owners: Faster packaging line speeds (reduced pkg cost)
 - Brand Owners: Improved organoleptics and improved package integrity. Ability to make large/heavy package due to improved hot-tack strength

— mLLDPE For Packaging Applications

What's Driving Today's Packaging Market?

Brand Owners

- More sustainable packaging
- Lighter weight
- On-the-go lifestyles
- Single-serve packaging
- Cost-effective

Converters

- Down-gauging
- Tougher films
- Processability
- Reduced Equipment Fouling

OEMs

- Faster running equipment
 - Efficiencies

Table 4. Blown Film^a Mechanical Properties for LDPE, LLDPE, and mLLDPE

Property	ASTM Test method	LDPE	C ₄ LLDPE	C ₆ LLDPE	C ₆ mLLDPE
Melt index I_2 , g/10 min	D1238	1.0	1.0	1.0	1.0
Density, g/cm ³		0.919	0.918	0.917	0.917
Gauge, μ m Tensile strength, MPa ^b		25	25	20	20
MD	D882	39	46	55	66
TD	D882	26	37	42	59
1% Secant modulus, MPa	b				
MD	D882	200	201	207	173
TD	D882	220	234	228	175
Elmendorf tear, g					
MD	D1922	170	140	255	185
TD	D1922	55	400	580	280
Dart impact, g		80	100	160	>1000
Haze, %	D1003	8	12	15	12
Gloss, 45°	D2457		50	51	47

^aFilms made at 1.8-kg/cm die circumference/h [10 lb/(hr·in.).] output rate, 2.5:1 BUR. 1.5-mm (60-mil) die gap used for LLDPE and mLLDPE, 0.76-mm (30-mil) die gap used for LDPE.

^bTo convert MPa to psi, multiply by 145.

^{*} Simpson and Vaughan – "Ethylene Polymers, LLDPE" - Encyclopedia of Polymer Science and Technology

Fig. 23. Melt viscosity data for LDPE, LLDPE, and mLLDPE all normalized to 1 g/10 min melt index. Also shown is new type of easy-processing metallocene-catalyzed polyethylene, mPE*. To convert Pa⋅s to P, multiply by 10.

^{*} Simpson and Vaughan – "Ethylene Polymers, LLDPE" - Encyclopedia of Polymer Science and Technology

INNATE® - Improved Processability

Melt Strength

Viscosity

- Better melt strength for improved processability and output rates vs. competitive mLLDPE (1 MI, 1918 d)
- More shear thinning for lower melt temperatures, amps & back pressures

Stiffness-toughness balance

Toughness

INNATE® - Unprecedented Toughness Performance (1 mil film)

2% Secant Modulus MD and Dart A

INNATE™ ST50 (0.85 MI, 0.918 d) delivers significantly higher dart performance at similar modulus vs. competitive mLLDPE grade (1 MI, 0.918 d).

■ ENGAGETM Polyolefin Elastomer (POE) for Impact Modification of Polypropylene (TPO)

Impact modification of polypropylene (TPO) using ENGAGE POE

TYPICAL HARD TPO

65-85% Polypropylene (h-PP, ICP, R-TPO)

15-35% Elastomer

Talc up to about 30%

Performance Additives (UV, AO, Scratch&Mar, etc.)

Generally Injection Molded

TYPICAL SOFT TPO

Over 50% Elastomer

Polypropylene & Other Additives (Cost/Performance)

Both Molded and Extruded

Soft TPO - Panel skins, Flooring, NVH

Impact modification of polypropylene (TPO) using ENGAGE POE

- Excellent dispersion in continuous compounding to make TPO (due to POE in free flowing pellet form)
- ➤ Excellent low temperature impact due to low glass transition temperature of POE (Tg ~ -55°C by DSC)
- > Excellent balance of stiffness and low temperature impact for TPO
- Displaced EPDM as modifier of choice for Automotive TPOs
- Many uses in durable applications

Society Benefit – Light weighting of cars for improved mileage efficiency.

 $(4.5 \text{ mm} = 1 \mu \text{m})$

Impact modification of polypropylene (TPO) using ENGAGE POE

- POE (0.87D, 1.0MI)
- EPR (0.86D, 0.2MI)
- EPDM (0.86D, 0.3MI)

POEs give balance of

- stiffness
- low temp toughness
- processability
- dimensional stability

Keys to commercial success

- ☐ Compelling value propositions across the value chain
 - Compounders: Ease of compounding using ENGAGE POE (pellets) vs. EPDM (bales/crumbs)
 - Molders: Improved processability
 - OEM: Improved stiffness/toughness balance for lightweighting.

AFFINITYTM GA for Hot Melt Adhesives (HMA)

Typical formulation for hot melt adhesive (HMA)

Polymer ~35%

Strength

Low Temp Performance

Tackifier ~45%

Lowers Viscosity
Increase and Broaden Tg

Wax ~25%

Lowers Viscosity
Fast Set-up Time

Hot melt adhesives (HMA) based on AFFINITY GA

Hot melt adhesives based on AFFINITY™ GA offer improved adhesive performance, application, and total cost (vs. EVA based).

Application

- Low odor / smoke from melt tanks
- Improved stability/reduce char in hoses/modules
- No angel hair/stringing
- Broad service temperature range (low Tg)
- Improved viscosity stability

Lower Total Cost

- Improved overall mileage as compared with EVA (lower density)
- Lower overall maintenance cost.
- Reduced downtime due to much less nozzle plugging.

AFFINITY GA vs EVA – Viscosity stability & glass transition temperature

- Long pot life, No char/odor
- Broad service temperature range from -40°C to 70°C

Hot melt adhesive – Total system cost

HMA based on AFFINITY GA_- Total Cost Savings of 30 - 50% vs. HMA based on EVA

Keys to commercial success

- ☐ Technical: Polarity does not matter for adhesion to paper (adhesion via mechanical interlocking)
- Partnership with HMA supplier to accelerate development and commercialization
- ☐ Reduced total system cost of HMA for various applications

INFUSETM Olefin Block Copolymer (OBC)

Random vs. Block copolymer structures

Random Copolymers

- Adding more comonomer lowers the polymer's density and crystallinity while increasing flexibility.
- However, the melt temperature, crystallization temperature, and heat resistance also drop as density is lowered.

Block Copolymers

- OBCs use same raw materials arranged into alternating "soft" and "hard" blocks.
- The soft blocks deliver flexibility and the hard blocks deliver heat resistance
- The customer gets flexibility similar to random copolymers (e.g. ENGAGE™ POEs) but with improved heat resistance, elastic recovery, compression set, and cycle times.

Catalytic block technology

Dow Shuttling System

- Coupled, reversible chain transfer between 2 different catalysts
- High catalyst efficiency
- Compatible with a wide variety of monomers

Incorporates little of the available comonomer: "hard" high density PE

Unique attributes of INFUSETM olefin block copolymer (OBC)

INFUSE OBCs exhibit unique properties versus polyolefin elastomers (POE) including:

- ☐ Outstanding flexibility-high temperature resistance balance
- ☐ Fast set-up in processing (shorter cycle time)
- ☐ Excellent elastic recovery properties
- ☐ Good compression set performance at room and elevated temperatures
- ☐ Improved abrasion resistance

Elastic performance of OBC elastomers

0.865 g/cc OBC has comparable elastic properties as SEBS

Dynamic set after testing @ 40°C - EVA, POE and OBC

Sample	Dynamic set (1 min after test)	Dynamic set (1 wk after test)
EVA	51.6%	51.6%
OBC	56.1%	11.0%
POE	56.7%	51.8%

EVA OBC POE

EVA OBC POE

100K cycles

спасибо gracias 射谢 THANK YOU