Polytechnique 2019

Sustainability in Packaging

Packaging Performance is Paramount/Priority requirement

 Must have performance to protect the economic and environmental investment in the product as well as the package.

Reduce, Replace, Recycle, Reuse, ...

- May still be room for further performance and cost optimization,
- · New opportunity to further optimize with sustainability driver: better performing resins at comparable total system cost.

Renewable (biobased), biodegradable, compostable

- Developments in processing,
- · New modifiers to improve performance (processing, end use),
- · New renewably sourced polymers with performance benefit.

Nanotechnology/Nanoparticles in Polymer Applications

- > Addition of nanoparticles: taking advantage of surface area, shape, functionality, ...
- > Nanoparticles (nanocomposites) can be used in some packaging applications: Barrier, Oxygen scavenging, antibacterial,....
- > Issues: regulation

I- FILM PROCESSING

What we already have:

- 4 extruder cast film and blown film line, 1 twin screw extruder
- 9 layer feedblock for cast
- 7 layer pancake for blown film
- Calander
- MDO unit

- Corona treatment (online or

offline)

II- FILM MORPHOLOGY ANALYSIS AND BARRIER

- -35 pack
- -Tabletop Scanning Electron Microscope from Hitachi with EDX
- Carbon/Chromium Sputter/Coater from Quorum
- Ultracryo microtome for SEM and TEM sample preparations

- Oxygen Transmission Rate Equipment (3) with and without Moisture control
- Water Vapor Transmission Rate Equipment (2)

II- FILM CHARACTERIZATION MECHANICAL CHARACTERIZATION AND

SEALABILITY

- Seal/Hot tack Tester
- Flex Crack Tester
- Abrasion Tester

3S pack

- Mechanical Properties Tester with environmental chamber
 - Tension mode,
 - Compression mode,
 - Puncture,
 - Cycling (fatigue)

II- FILM CHARACTERIZATION OTHER CHARACTERIZATIONS

- FTIR with microscope
- Conductivity /Resistivity Tester
- Helium Pycnometer

- Oxygen, CO₂ and Ethylene Reader

3S pack

II- OTHER PROCESSING AND CHARACTERIZATION EQUIPMENTS

Available in CREPEC, Department and Polytechnique:

- Internal batch Mixer
- Injection Molding Machine, thermoforming.
- Single Screw and Twin Screw extruder (lab scales)
- DSC (Differential Scanning Calorimetry)
- TGA (ThermoGravimetric Analysis)
- DMA (Dynamical Mechanical Analysis)
- Rheology
- Impact Tester
- Tear Tester
- Dart impact Tester
- HDT (Heat Deflection Temperature) Tester
- TEM (Transmission Electron Microscope)
- AFM (Atomic Force Microscopy)
- XPS, SIMS,...
- Environmental chamber, Solvant and Water Ovens

-..

Typical Packaging Structure

Nanostructures and Functionnality can be involved in all these layers

PLA based films for packaging Spack

PLA in Packaging

✓
Very Difficult Processing

(Poor Flex-crack and tear)

PLA/PBAT blends

Produce Bio-based or compostable sealant films for environmental friendly packages.

Bioplastic sealants

Result: Mechanical Properties and seal behavior of blends

- Hottack Plateau initiation temperature Decreases up to 30 °C
- Hottack Strength increases up to twice

- Sealing were done at 40 psi and 0.5 s dwell time
- Peeling was done at 33 mm/s

Nanoparticles addition (Nanacomposites) or coatings for Barrier Enhancement.

Nanocomposites

PNC based on layered silicates have received very much attention because of their potential to improve:

- > Stiffness, strength and impact resistance
- > Barrier properties
- Dimensional and thermal stability

Barrier Enhancement: Tortuous Path

What does it take to reduce 50% permeability?

Aspect ratio		Volume (
	20	9%		
	200	1%		
	400	0.5%		

$$P_{\text{nanocomposite}} = \frac{(\textit{Matrix Volume Fraction})^*(P_{\text{matrix}})}{1 + (\textit{Clay Volume Fraction})^*(\textit{Clay Aspect Ratio})/2}$$

L. E. Neilson, J. Macromol. Sci. (Chem.), A1(5), 929-942 (1967)

PA-6 Nanocomposites: Oxygen permeability

The values are normalized

Total thickness: 50 μm, sample 1: PA 6 μm, 2: PA 12 μm

17

MDO Effect on Barrier

Oxygen permeability for multilayer films with nylon and nanocomposite

Layer by layer film deposition technique $2 \zeta pack$

Parameters optimization and main results 2 C pack

Dipping time	Polymer solution (% wt)	MMT suspension (% wt)	CS solution pH
1min	0.1	0.5	6

Conclusions - Barrier Layer 35 pack

- > Barrier properties of polymers can be improved using nanocomposites,
- > Clay intercalation/exfoliation plays a significant role in barrier properties improvements,
- > Barrier coatings are good alternatives, if process and moisture allow,
- > LBL technique is promising, but needs developments for large scale applications.

Active Packaging:
Antibacterial and Oxygen
Scavenging Films: Less wasted
food, product sustainability.

Active layer using OS

Oxygen molecule initially inside container

Evaluation of ShelfPlus: Main findings

- Blends with LLDPE have better oxygen depletion behavior.
- Shelfplus blended with Bynel exhibit lower OS.
- EVOH+ShelfPlus lowest effect.

Methodology

Grade	FPS 317A+	FPS 317A+ ZnO Novachemicals		LLDPE/AM (Tie layer)	
	4 g/10min		Bynel 42E703 Du Pont		
				6,4 g/10 mn	
Sample	3	4	5	5	
Temperature	190	200	1-4 :200	1-4 :200	
			5-9: 220	5-9: 220	
Thikness µm		·	70		

Spray of ZnO nanoparticles on the LLDPE 2 C pack films

ZnO nanoperticles

Extruded LLDPE films

> Exit of the die

LLDPE/ZnO films

Twin-Screw Extrusion

November 2016

March 2017

Result: Disintegration and mechanical strength

Integrity of samples are lost ⇒ loss of mechanical properties

Result: Composting and gas collection

Faster bacterial digestion ⇒ Larger amount of CO₂ evolved

Concluding Remarks:

- > Many challenges still remain for the development of more sustainable packages with the use of nanoparticles / nanostructures in Packaging:
 - > Dispersion,
 - > Manipulation and Regulation,
 - > Appropriate Performance.

