

PO Conference, February 2019

Sustainable Nanofibril Technology for Polyolefines with Superior Properties and Foaming Abilility

Chul B. Park

University of Toronto

Microcellular Plastics Manufacturing Laboratory

Current Solutions:

- Long-chain branching: Resin is at least 2x as expensive as the linear counterpart for PP
- Crosslinking: Renders polymer non-recyclable
- Nanofillers (e.g. nanoclay): Modification of surface chemistry for uniform dispersion

A. Rizvi, C.B. Park, M. Yamaguchi, **JP2013-514463**, 2013, and **WO2013137301**, 2013 A. Rizvi, A. Tabatabaei, R. Barzegari, H. Mahmood, C.B. Park, *Polymer*, **2013**, 54, 4645-4652

Morphology of PTFE in linear PP

Twin-screw

with PP

Original PTFE granules

Spherical

Residue of PP/PTFE (99.7/0.3 wt.%), after dissolving in xylene

> PTFE readily undergoes **plastic deformation**

- > PTFE exhibits high **ultimate strain**
- > Entangled fibrils enhance **melt strength** of matrix

A. Rizvi, C.B. Park, M. Yamaguchi, JP2013-514463, 2013, & WO2013137301, 2013 A. Rizvi, A. Tabatabaei, R. Barzegari, H. Mahmood, C.B. Park, Polymer, 2013, 54, 4645-4652

Fibrillar structure

Frequency dependence of elastic and shear moduli at 190°C (PTFE 3 wt%)

A. Rizvi, C.B. Park, M. Yamaguchi, **JP2013-514463**, 2013, and **WO2013137301**, 2013 5 A. Rizvi, A. Tabatabaei, R. Barzegari, H. Mahmood, C.B. Park, *Polymer*, **2013**, 54, 4645-4652

Strain-induced hardening in uniaxial elongational flow (PTFE 3 wt%)

UNIVERSITY OF

A. Rizvi, C.B. Park, M. Yamaguchi, **JP2013-514463**, 2013, and **WO2013137301**, 2013 A. Rizvi, A. Tabatabaei, R. Barzegari, H. Mahmood, C.B. Park, *Polymer*, **2013**, 54, 4645-4652

Kinetics of Transcrystalline Growth

A Rizvi, A Tabatabaei, P Vahedi, SH Mahmood, CB Park, Polymer, 135, 185-192, 2018

Effect of Crystals on Foaming

- 1. Gas is expelled from growing crystals into the boundary of crystal and amorphous region: <u>supersaturation (Taki)</u>
- 2. Crystallization causes shrinkage, and therefore, <u>tensile stresses</u> are applied on the polymer melt by the crystals. (Wong)
- The rigid body motion of crystals generates <u>local tensile stresses</u> generated around the polymer crystals (Wong)

Taki K., Kitano D., and Ohshima M., *Ind. Eng. Chem. Res.*, 2011. 50(6): p. 3247-3252 Wong A., Guo Y., and Park C.B., *J. Supercrit. Fluids.*, 2013. 79: p. 142– 151

Experiment: Tandem foam extrusion system

Material	 Linear PP PP/PTFE (97/3 wt%)
Die	L/D ~8.3 (L = 10 mm / ø = 1.2 mm)
CO ₂ Content	10 wt%
Equipment	Small tandem extruder (0.75"/ 1.5")

UNIVERSITY OF

SEM Images of extruded PP foams

Die blockage occurred at 125°C

SEM Images of extruded PP/PTFE (97/3 wt%) foams

Foam characterization

Expansion Ratio: Up to 10-fold increase
 Cell Density: Up to 2 orders of magnitude increase
 Open-cell content: Up to 97.7% at 150°C

A. Rizvi, C.B. Park, M. Yamaguchi, **JP2013-514463**, 2013, and **WO2013137301**, 2013 A. Rizvi, A. Tabatabaei, R. Barzegari, H. Mahmood, C.B. Park, *Polymer*, **2013**, 54, 4645-4652

Open-cell foams at 150°C

A. Rizvi, R.K.M. Chu, J.H. Lee, C.B. Park, ACS Appl. Mater. Interfaces, 2014, 6, 21131-21140

Video of gasoline uptake by open-cell foam

A. Rizvi, R. K.M. Chu, J.H. Lee, C.B. Park, ACS Appl. Mater. Interf., 2014, 6, 21131-21140

Problem:

Chemically-modified PTFE is expensive!

Solution:

Find an inexpensive alternative to this PTFE.

Development of polymeric fibrils as foam enhancing additives: **PP/PET Case Example**

PP

PP/fibrillated-PET

A. Rizvi, C. B. Park, B.D. Favis, Polymer, 68, 83-91, 2015

Small-scale: Uniaxial extensional flow behavior of PP/PET

Strain-induced hardening in uniaxial extensional flow observed at **strain rates** ≥ **0.01 s**⁻¹

A. Rizvi, C. B. Park, B.D. Favis, Polymer, 68, 83-91, 2015

Effect of draw ratio on morphology of PP/PET (95/5 wt%)

Length~38 µm Diamater~210 nm Aspect Ratio~ 181

Foam morphology (PET 5 wt%)

A Rizvi, ZKM Andalib, CB Park, Polymer, 110, 139-148, 2017

Foam Injection Molding of PP/PTFE Nano-Fibril and PP/PET Nano-Fibril

Sm.

Micrecellular Plastics Manufacturing

Laboratory

UNIVERSITY OF

TORONTO

PP Foam Structure with PTFE Nano-Fibril

Effect of dwelling time on cell morphology (perpend. to Mold-opening)

- PTFE improves the cell morphology significantly
 - 3-order increase in cell density;
 - 1-order decrease (~500 μ m \rightarrow 50 μ m) cell size

J Zhao, Q Zhao, C Wang, B Guo, CB Park, G Wang, Mater Des, 131, 1-11, 2017.

• Radiation-induced long chain branching

- Undesirable crosslinking;
- Decreasing the recyclability
- Degradation, gelation, oxidation
- Costly

Properties of PE/fibrillated-PP (95/5 wt%)

T= 130 °C

Micr_ecellular

Plastics Manufacturing

Micrecellular

aboratoru

<u>A. Rizvi</u> and C. B. Park, *Polymer*, **2014**, *55*, 4199-4205

Development of polymeric fibrils as foam enhancing additives: mPE/PP Case Example

A. Rizvi and C. B. Park, Polymer, 2014, 55, 16, 4199-4205

Blends Morphology

26

Extensional Viscosity

27

Microcellular Plastics Manufacturing Laboratory

Foaming Ability

➢ Foaming Condition: Time: 1 hour; Pressure: 2000 psi; Temperature: 110°C for LDPE and 115°C for LLDPE

Tensile Property

A Rizvi, ZKM Andalib, CB Park, Polymer, 110, 139-148, 2017

Tensile Properties of PLA/Nano-Fibril PA

30

A Ramezani Kakroodi, Y Kazemi, WD Ding, A Ameli, CB Park Biomacromolecules, 16, 3925-35, 2015.

Oxygen Transmission Rate (OTR)

- Dramatic reduction in the PLA's OTR after the inclusion of even a small amount of the PA microfibrils
- The MFCs with **9 wt.%** of the microfibrils showed the lowest OTRs

AR Kakroodi, Y Kazemi, M Nofar, CB Park, Chem Eng J, 308, 772-782, 2017

Impact:

- Iso-200 nm fibers with 100-200 aspect ratios dramatically Improves the foaming ability of "not foamable" resins.
- The stiffness, tensile strength, and impact strength of the mechanically weakened foams are dramatically increased.
- Barrier property is also improved.

Sustainability of Foam

Foam is preferred because of:

- Use of less material
- Use of less energy (less carbon-foot print)
- > Better performance for higher stiffness, elasticity, soft touch, sealing, etc.

Increasing market demand from:

- > Automotive (mileage)
- Sports (footware)
- Construction (insulation)
- PP foam food containers over PS foam food containers
- PP foam cups over PS foam cups and paper cups
- > Oil spill cleaning
- > Chemical blowing agent vs physical blowing agent for footware, etc.

But there are numerous technical challenges in PO foam processing

Sustainability of Nanofibril Technology

To overcome the numerous technical challenges of PO foam processing, the nanofibril technology can be used:

- Improved PO foam quality with finer cells and better mechanical properties, by using the nanofibril technology.
- Largely expanded Lightweight PO foams using the nanofibril materials. So less material required. Less carbon foot print.
- Recyclable open-cell PO foam cushion out of nanofibril PO composites over nonrecyclable open-cell PU foam cushion
- > Nanofibril-containing PO foams over cross-linked PO foams in automotive industry

