

USING RHEOLOGICAL MEASUREMENT TO PREDICT THE PHYSICAL FOAMING WINDOWS FOR POLYOLEFIN COPOLYMERS

Hyunwoo Kim, Jozef Van Dun, Brian Yu, Kyle Kummer, Miguel Prieto, Devin Foether The Dow Chemical Company

SPE International Polyolefins Conference February 2019

Polyolefins Foam Applications

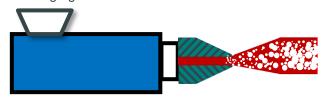
Protective Packaging

Recreational

Insulation

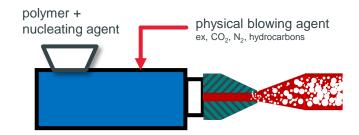
Cushioning

Broad end-use applications for Polyolefin foams



Foaming Methods

Chemical Foaming


polymer

+ chemical blowing agent (ex, azodicarbonamide, sodium bicarbonate) + nucleating agent

- Easy to transport and store
- No need for extruder modification
- Processing window governed by CBA
- Residues after foaming

Physical Foaming

- Precise control of foaming conditions
- Environmentally friendly
- Equipment to pressurize, inject PBA
- Extruder/screw modification

Ethylene Copolymers with Different Molecular Architectures

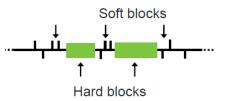
Ethylene Vinyl Acetate Copolymers (EVA)

ethylene vinyl acetate copolymers

Polyolefin Elastomers

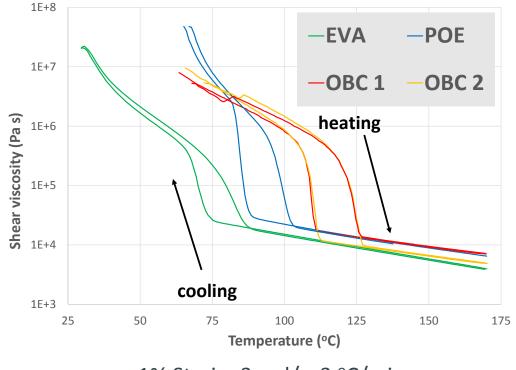
(POE)

Olefin Block Copolymers (OBC)



Low comonomer and High crystallinity

High comonomer and Low crystallinity



DOW RESTRICTED

®™Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow

Viscosity – Temperature Relationship of Ethylene Copolymers

1% Strain, 3 rad/s, 3 °C/min

Physical Foaming of Ethylene Copolymers

Technical Hypotheses:

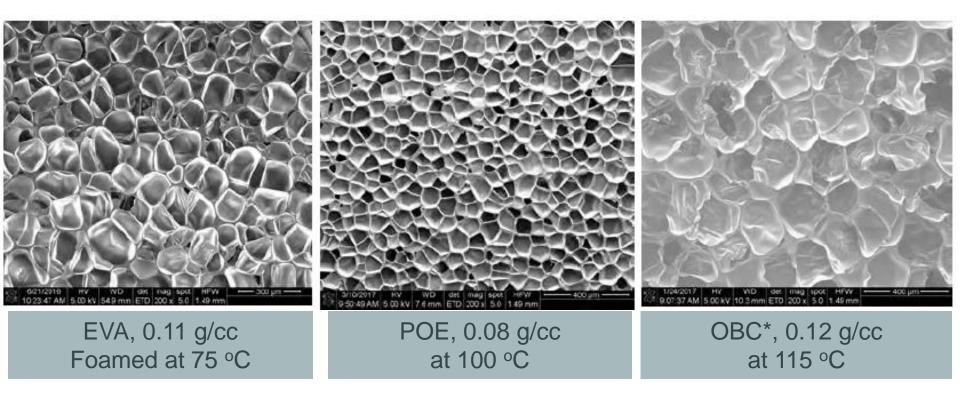
- Via physical foaming, ethylene copolymers will form a stable foam without the need for cross-linking.
- Physical foaming of ethylene copolymers has an optimal temperature window.
- The foam processing windows (material and foaming process dependent) can be predicted and linked via the material rheological properties.

Materials used in this study:

- Ethylene vinyl acetate copolymer (EVA)
- Polyolefin Elastomers (POE)
- Modified Olefin Block Copolymers (OBC)

Material	Remark		
EVA	21% VA, 2.5 MI		
POE	0.902 g/cc, 1 MI		
OBC 1	0.885 g/cc, 1.5 MI*		
OBC 2	0.885 g/cc, 5 MI*		

* Properties before modification

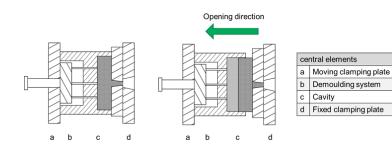

Batch foaming apparatus

Dow

Actuated ball valve Soak polymer with CO₂ **Rapid Vent** Pressure CO_2 CO_2 Ρ Transducer **Post-foam** Load т Soaking Sample Time

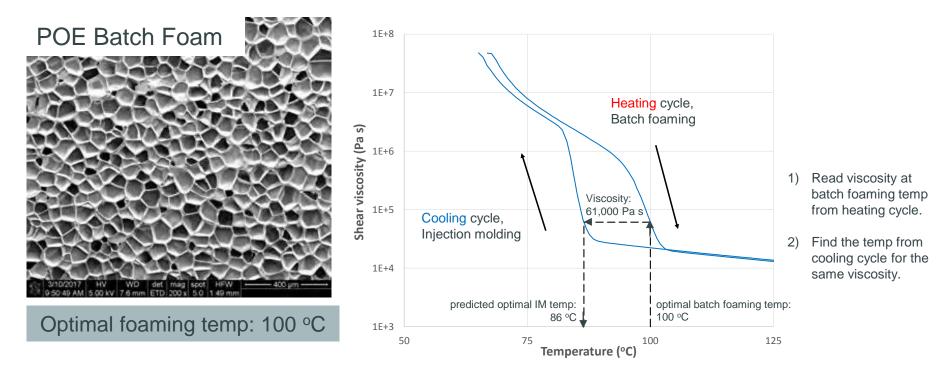
Batch foaming cycle

Foam Morphology: Batch Foaming

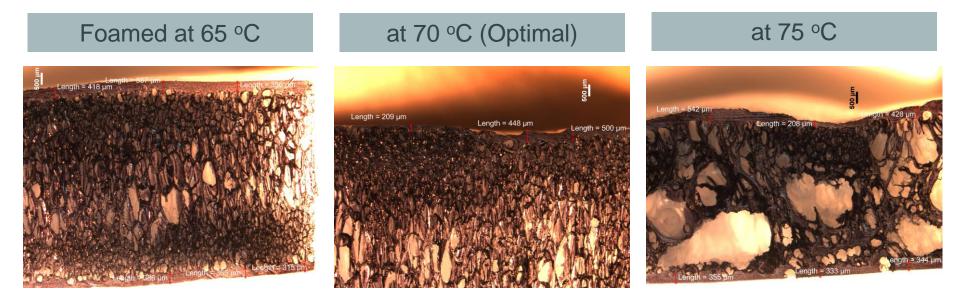

Homogeneous cell morphology, minimal cell coalescence.

* Un-modified OBC

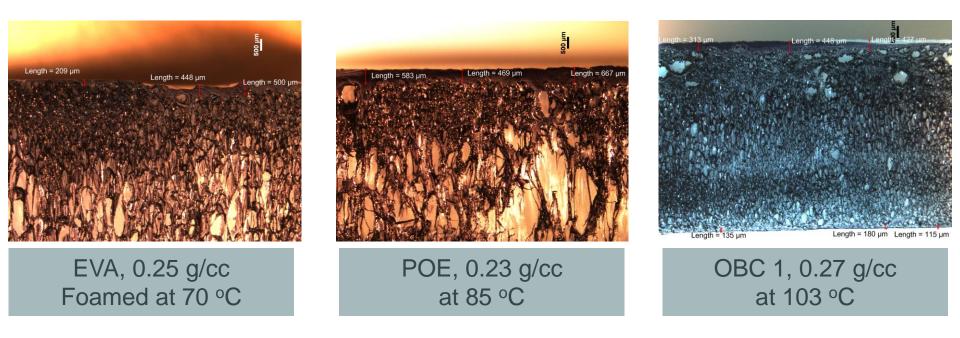
Dov


Foam Injection Molding

- Collaboration with IKV, RWTH Aachen University
- MuCell process using CO₂
- Arburg 520 A injection molding press
- Precise control of mold temperature, opening speeds / distance


Predicting Foam IM Conditions from Batch Foaming Results

Optimal IM foaming window determined from batch foaming results.


Dow

Defining Processing Window: EVA

- Materials displayed a very narrow processing window in foaming temperature.
- Foam quality changed dramatically even with 5 °C deviation from the optimal temperature.

Foam Morphology: Core Back Injection Molding

Coarser but homogeneous cells for low foam density.

Foam Window Prediction / Actual Summary

Material	EVA	POE	OBC 1	OBC 2
Optimal batch foaming temp (°C)	75	100	124	124
Shear viscosity (Pa s)	220000	61000	46000	50000
Tan delta (from heating)	0.17	0.54	0.7	0.65
Optimal injection foaming temp (°C)	68	86	110	110
deduced from batch foaming				
Actual optimal foaming temp for	70	85	103	105
injection molding				
Shear viscosity (Pa s)	100000	200000	600000	460000
Tan delta (from cooling)	0.35	0.5	0.38	0.4

Good agreements in predicted and actual IM foaming window.

Dow

- Thermoplastic foams of EVA, POE and OBC resins were prepared via batch foaming and injection molding.
- Optimal foaming temperatures for these ethylene copolymers were determined based on the cell sizes and foam density: very narrow foaming temperature window.
- Optimal windows for these two foaming methods are somewhat different but can be related via the rheological properties for resins.
- Based on the batch foaming results, optimal foaming temperatures for foam injection molding were predicted. These predictions correlated well with the best foaming conditions found in injection core-back foaming.

Thank You

