

EFFECT OF PROCESSING ON THE PERFORMANCE OF WATERBORNE HEAT SEAL COATING

Carlos Escobar

Amit Chaudhary, Lou Cygan, James Lipovsky, Yinzhong Guo, Nolan McDougal

The Dow Chemical Company

Dow.com

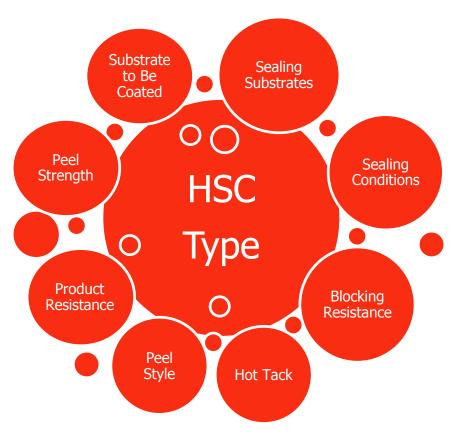
International Polyolefin Conference, February 26th, 2019.

Outline

- Heat-Seal Coatings.
- Introduction to BLUEWAVE[™] Technology.
- Raw Materials and Characterization Tests.
- Performance Comparison.
- Conclusions

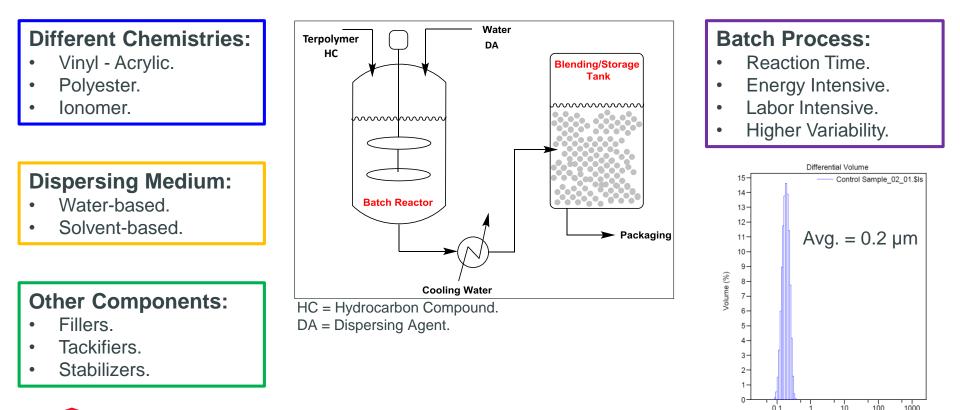
Heat-Seal Coatings (HSC)

Defining Characteristics:


- Thermoplastic materials.
- Rigid or flexible substrates.
- Solidified and tack-free.

Creating Permanent Bond:

- Heat.
- Press.
- Cool.


Selected Applications:

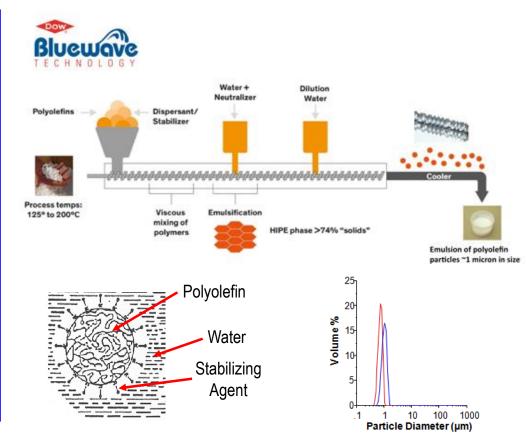
- Industrial.
- Medical Pharmaceutical.
- Food.

Heat-Seal Coatings (HSC)

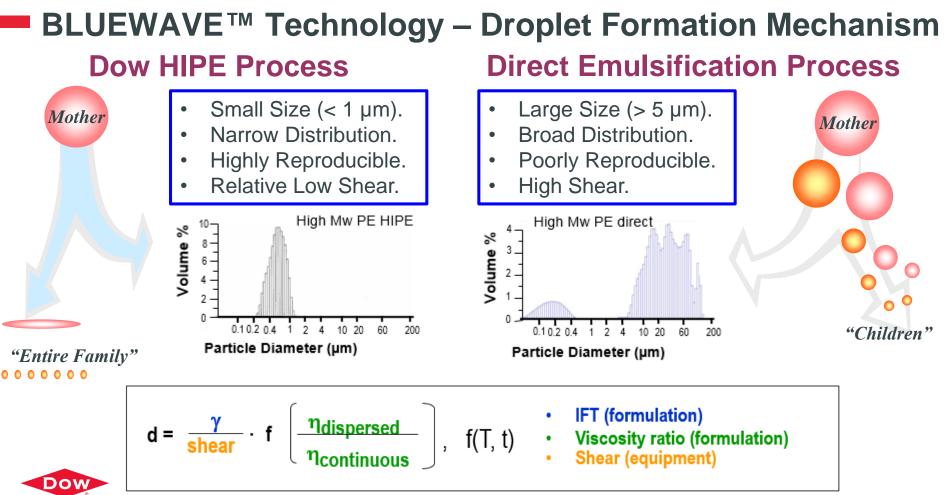
Particle Diameter (µm)

Introduction to BLUEWAVE™ Technology

Defining Characteristics:


- Commercially viable.
- Continuous.
- Solvent-free.
- High-quality dispersions.

Enables processing:


- High Molecular Weight (Mw) Polymers.
 - > 75k Mw
- Non-self Dispersing Polymers.

Selected Applications:

- Heat Seal Coatings.
- Industrial Paints and Coatings.
- Home and Personal Care.
- Composite Materials.
- Oil and Gas Additives.

BLUEWAVE™ Technology – Properties of Dispersions

Properties:

- Average Particle Size = 1 μ m.
- 30 55 % Solids Content.
- Viscosity < 500 cP.

Raw Materials:

- LDPE, HDPE, Olefin Elastomers, Functional Olefins.
- Different Properties:
 - Tg, % Crystallinity, Mw.

Tailor Properties such as:

- Toughness.
- Haptics.
- Moisture Barrier.
- Adhesion.

Film Formation – Hot Stage Microscopy

Suitable for Industrial Applications with Cure Cycle, Semi-crystalline polyolefin dispersion, Tm ~70 °C

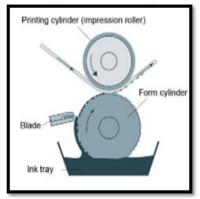
Common Applications:

- Paper Coatings, Hot Melt Adhesives.
- Pressure Sensitive Adhesives, Health and Hygiene, Hair Care.
- Plastic Coatings, Gaskets for Metal Closures.
- Carpet Backing.

BLUEWAVE™ Technology – Application Methods

Stable Liquid Dispersions

Spray Dried Powders


Draw Downs

Spray Application

Dipping

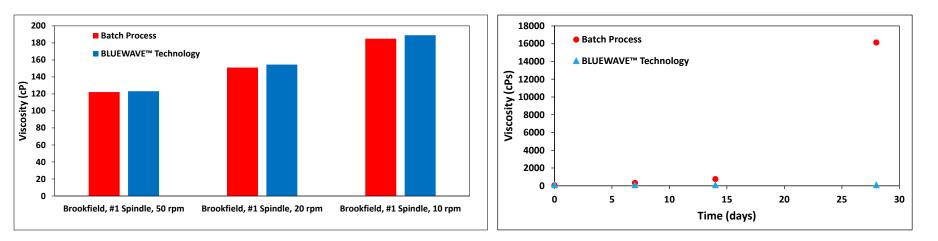
Rotogravure & Inkjet

Raw Materials and Characterization Tests

Material	Material Properties	Density (g/cm ³)
Terpolymer	*MI = 6 g/10 min	0.96
HC – 1	**MT = 59° C	0.96
DA – 1	$MT = 144^{\circ} C$	1.069

Measurement	Instrument Used	Condition					
Particle Size	LS 13 320 Beckman Coulter particle size analyzer	Test done with dilute solution of sample					
Viscosity	Brookfield						
Solids							

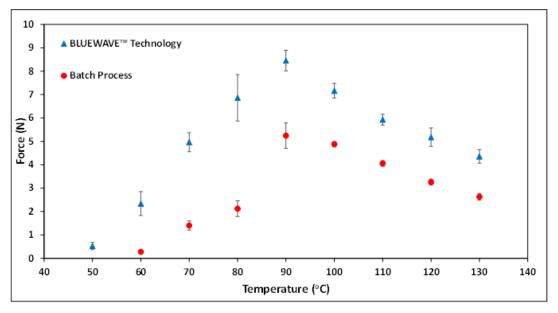
*Melt Index (190 C/2.16 kg).


**Melting Temperature.

Dispersion Properties	Batch	BLUEWAVE™ Technology	1	00 90 80 4		- 관람물 -	(a) (a) (a) (a) (a) (a) (a) (a) (a) (a)	1					77 -20
Average Particle Size (µm)	0.2	0.86	ţing	70 60		가 가지 않다. 이 가지 않다. 이 가지 않다. 이 가지 가지 이 가지 않다. 이 가지 않는 다. 이 가지 않는 다.		f					
Viscosity @ 20° C (cP)	120	122	%Pass	50 40 		a ana dia 1999 - Ca Casa Casa					1.201 - 2.2 2.201 - 2.2 2.201 - 2 2.201 - 2.2 2.201 - 2.2 2.201 - 2.2	1 - E COBRE 2 - C SPREZ	
Solids (wt%)	40	39.8		30+20+		n na bai Alimina akim		 			2000 - 200 2001 - 20 2001 - 20 2003 - 20 2003 - 20 2004 - 20 20 2004 - 20 20 20 20 20 20 20 20 20 20 20 20 20 2	a a se a sera dia Non transferi	 <u>ندی</u> ۱۰۰
рН	10.4	10.2		10 + 0 + 0.0	1	0.1	Д.,	1111 1111 - 1 1	10	· · · · · · · · · · · · · · · · · · ·		1,DC	- La

%Channel

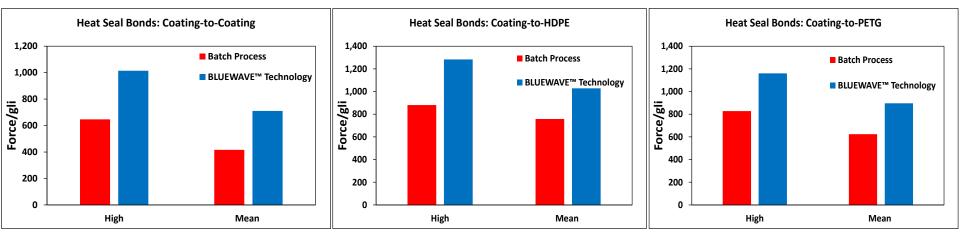
Viscosity Behavior



BLUEWAVE™ Technology material has similar viscosity of as Batch-Process material

Batch-Process samples had significant viscosity build over 2 – 4 weeks.

Hot Tack and Appearance Response



BLUEWAVE[™] Technology material has an effective, lower, on-set temperature and higher bonds than Batch-Processed materials at a given temperature.

BLUEWAVE[™] Technology material is milky white suspension in solution – Color improvement from Batch-process material (milky off-white).

Heat Seal Bond Strength Response

BLUEWAVE[™] Technology material has similar-to-higher bonds than batch-processed material on a variety of substrates:

- Coating-to-coating
- Coating-to-HDPE
- Coating-to-PETG

Conclusions

- BLUEWAVE[™] Technology samples perform equal to or exceeds that samples produced by means of a batch process.
- Viscosity remains constant.
- Longer shelf-life.
- Batch Process vs. BLUEWAVE™ Technology.
- BLUEWAVE[™] Technology samples exhibit lower on-set temperature and higher bonds.
- BLUEWAVE[™] Technology samples offer similar-to-higher bond strength on a variety of substrates.

Thank You!

