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Differences based on micromechanical interpretations of stacked lamella.

Extend to explaining toughness differences, like tear resistance. 

Overview
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Univariate Analysis  

Relationships use different measurement scales.

Relationships are general and not always monotonic.

Average of selected samples.



Overlay Plot of Univariate Results

Liner PE Films ; > 0.89 Den, 90-400 K Mw, Pd < 11



Mean ≈  most frequent value

Spread ≈ four standard units of deviation

Values are mean centered and scaled to unit variation.

x is the individual data value

 is the data’s average value

 is the standard deviation

Performance increases with normalized values:

Distance and direction depict performance

Statistics describe populations

Statistical Analysis 

𝜌12 =
𝑐𝑜𝑣(𝑥1,𝑥2)

𝜎1𝜎2
where 𝑐𝑜𝑣 𝑥1, 𝑥2 =  (𝑥1 − 𝜇1)(𝑥2 − 𝜇2)/(𝑛 − 1)

n is the number of paired data points.  

xi is the data’s individual values

𝜇𝑖 is their average values

i is the standard deviation for their average values

r12 is their coefficient of correlation

Interaction: How the results of one population are restricted by the value of the other population

Statistics removes differences due to measurement scales: variable effects are on equal footing.



xi is the individual data values

𝜇𝑖 is their average value

i is the standard deviation for those average values 

Principle axes reduces covariance. Orthogonal axes eliminates covariance. 
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PCA of MD Tear Resistance and TD Ultimate Properties

Projection onto coordinate planes gives bi-pots, like above.3D PCA plot
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Resin Film

(c) 2010, ProSensus Inc.
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Principal Component Analysis Principal Component Regression

PLS Background



Resin Density I2 I21 

Family  (g/cc)  (g/10 min) (g/10 min) 

Competitive 0.906 - 0.941 0.56 - 1.8 14 - 32 

m-LLDPE 1 0.904 - 0.933 0.35 - 1.3 8 – 34 

m-LLDPE 2 0.894 - 0.957 0.16 - 1.7 9 – 50 

m-LLDPE 3 0.903 - 0.928 0.98 - 1.9 15 – 32 

Experimental 0.917 – 0.932 0.46 – 1.2 18 - 65 

ZN-LL 0.918 - 0.944 0.81 - 3.1 20 – 88 

HDPE 0.958 - 0.961 0.45 - 0.7 28 – 32 

Solution 0.900 1.2  

HP-LDPE 0.926 – 0.951 0.35 – 2.5  

 

+ 1 K Films by Resins and Line



PCA  Overlay Plot

Confidence 

Limits

PCA for + 1 K Films

Explains (R2(cum)) and predicts (Q2(cum)) > 70% of the 

variation in the film’s balance of properties.

R2(cum) are shown by blue bars.

Q2(cum) are shown by red bars, calculated through cross validation

(R2(cum) and Q2(cum) by performance variable. 
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Resin Properties

DEN Mw Rheology
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Coefficient Bar Graph
MD Secant Modulus vs. Comonomer Content

Coefficient Bar Graph
MD Secant Modulus vs. Molar Mass

2D Coefficient Bar Graph
MD Secant Modulus vs. Molar Mass and Comonomer Content

Contour Plot
MD Secant Modulus vs. Molar Mass and Comonomer Content

2D Coefficient Plots  

Coefficient increase with an increase in lighter color and decrease with an increase in darker color.

Low Mw
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2D Coefficient Plots



PLS Bi-plot (T[1]-T[2])
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Film performance depends on resin molecular architecture and film fabrication conditions. 

Structure-process-property relationships for blown film resins were established using multivariate statistical 

methods of analysis. 

Optimum balance of film properties is obtained for molecular architecture.

Summary

Data generated by or on behalf of ExxonMobil

Information on a wide variety of films using a broad spectrum of commercial resins was presented.  

Fabrication dependent and independent models show resin molecular architecture affects film performance 

more than film fabrication conditions.  

• Fabrication independent models explain about 50% of the total variation in film performance.  

• Fabrication dependent models explain about 70% of the total variation in film performance.

• 20% to 30% of film performance is unexplained by the fabrication dependent model.   

• Application to resin blends was shown.

ExxonMobil is using this technology in developing new blown film resins with superior balances of performance. 
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Reduce Covariance Matrix into a Diagonal Matrix.  

The covariance matrix is symmetric and non-singular.  It is reduced using an orthonormal matrix U.

S L

U’SU = L

Solve U’SU for the Eigen values of S using the characteristic equation:

Use the Eigen values (ui) to determine the Eigen vectors(li):

| S – lI | = 0

S – lI   ti = 0

Where the components of U are the Eigen vectors of S, and those of  L are the Eigen values of S.

Technically, the Eigen vectors and values are determined iteratively using algorithms like NIPALS. 

Linear Regression y = a x + b Mean Centered (y − 𝑌) = a (y − 𝑌) 𝑎 =
𝐶𝑜𝑣(𝑥, 𝑦)

𝑉𝑎𝑟(𝑥)

Extends to multivariate analysis
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PCA for a Small Data Set



Test Methods
Test Description Method Based on

1% Secant Modulus ExxonMobil Procedure ASTM D882-95a

Tensile Test ExxonMobil Procedure ASTM D882-95a

Elmendorf Tear ASTM D1922-15

Dart Impact (Method A / B) ExxonMobil Procedure ASTM D1709-91

Puncture Test** ExxonMobil Procedure ASTM D 5748

Haze ASTM D1003-13

Gloss ASTM D618 ASTM D2457-90

Average Gauge Mic* ExxonMobil Procedure ASTM D374

Resin Density ASTM D1505-10  

Melt Index ASTM D1238-13

CFC Test EM314-R4

SAOS (Shear Rheology) EM513-R2

Rheotense (Extensional Rheology) RHE04-3.3 & EM 514-R1

TEM (General TEM Analysis) EM-116 R2

*Calibrated yearly. 

**A steal probe is used instead of a Teflon coated probe. 

DSC Analysis:

Samples of resin or film (3-5 mg) sealed in aluminum sample pans were heated and cooled in differential scanning calorimetry (DSC) at 10 °C/minute from -60 

C to +220 C, from +220 C to -60 C and again from -60 C to +220 C with no hold time between each heating and cooling step.  Each sample’s heat of fusion 

(DHf) was determined from its total heat flow (DH in J/g).  Melting temperature was measured and reported during the second heating cycle (or second 

melt). Each sample’s degrees of crystallinity was determined from its thermogram using the enthalpy of fusion of a perfect polyethylene crystal (DHf
o ) of 4110 

J/mole. Common heats of fusion (DHf
o ) reported in the literature for a pure crystalline polyethylene ranges from 3977 J/mole to 4032 J/mole. The cumulative 

heat of fusion of each polyethylene was determined and the temperatures at 50%, 60%, 70% and 80% of the maximum cumulative heat of fusion noted. 



GPC explains linear rheology using Double Reptation Theory

J. D. Ferry, “Viscoelastic Properties of Polymers”, John Wiley & Sons, New York, 1980

𝜂𝛾 = 𝜂∞ + 
𝜂0 −𝜂∞

1+𝑘𝛾𝑛

𝜂0 is zero shear viscosity

k is a related to the relaxation time of the polymer in solution

 is shear rate

n is the power law flow index

A. Yo. Malkin and A. I. Isayer, “Rheology: concepts, methods and Applications”, ChemTec Publishing, Canada, 200

Cross explains linear rheology
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