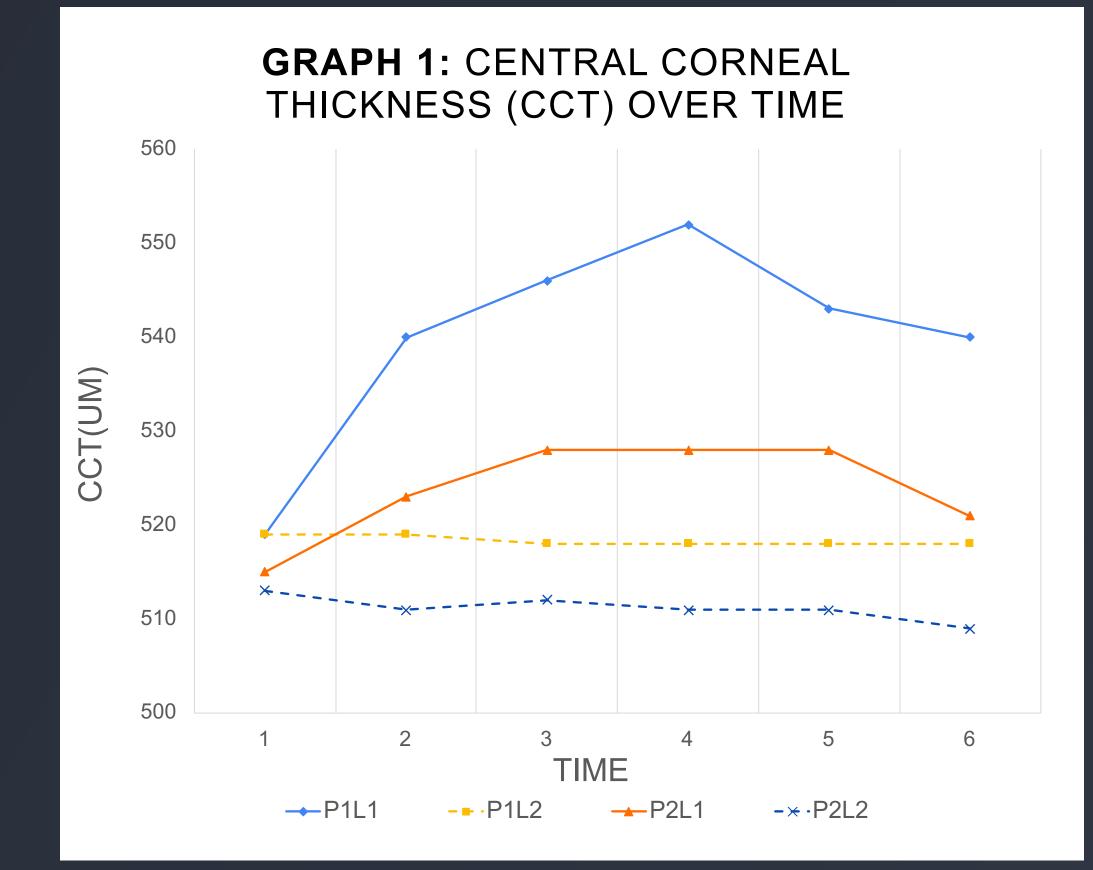
# Comparison of Two Lens Materials and their Effects on Corneal Hypoxia in Scleral Lens Wear Over Time – A Pilot Study

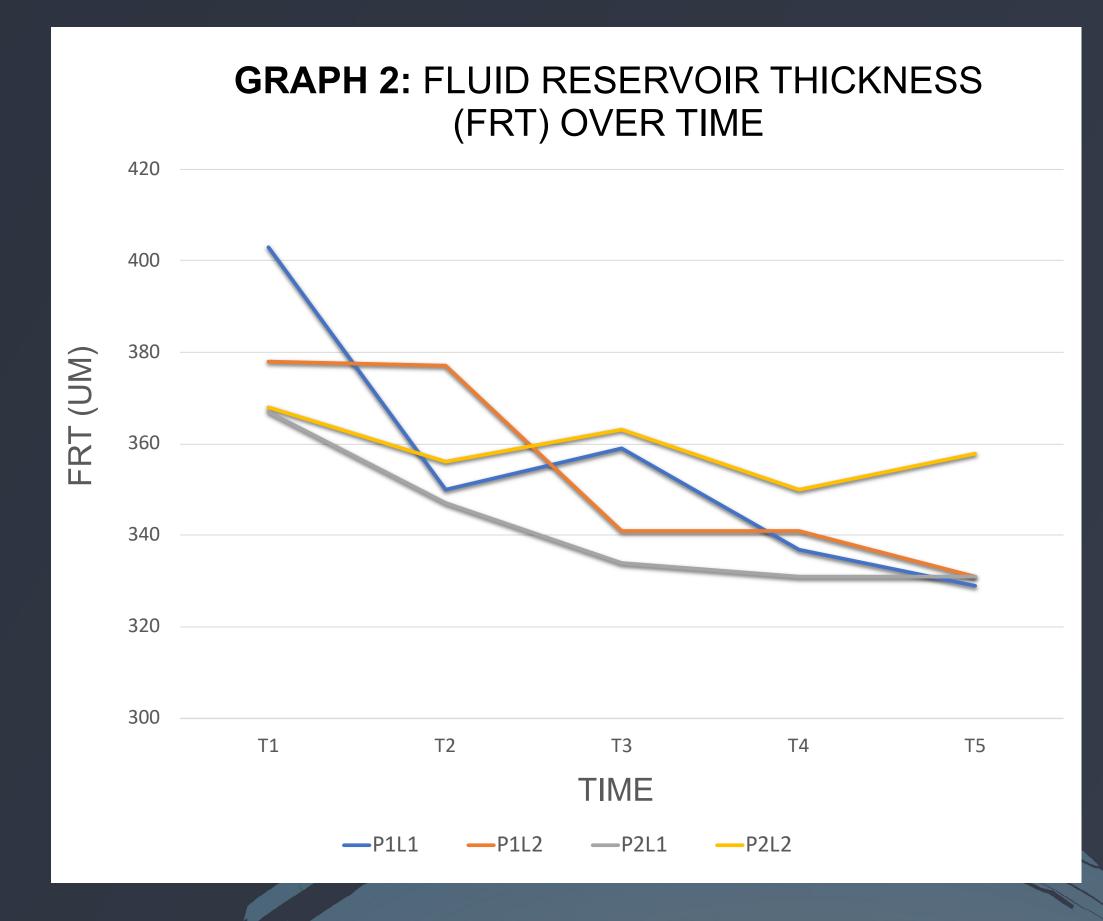
## Marie-Michèle Dupuis, OD<sup>1,2</sup>; Gabriella Courey, OD<sup>1,2</sup>; Patrick Simard, OD MSc MBA FAAO FBCLA<sup>1,2</sup>; Langis Michaud, OD MSc FAAO (Dipl) FSLS FBCLA FEAOO<sup>1,2</sup>

<sup>1</sup>Innovation et recherche en lentilles cornéennes de Montréal, Montreal, Quebec, Canada <sup>2</sup>École d'optométrie, Université de Montréal, Montreal, Quebec, Canada

### École d'optométrie Université m de Montréal

#### Introduction


- Hypoxic stress to the cornea remains a concern when considering scleral lenses (SL) on corneas with low endothelial cell count or as the industry moves toward fitting regular corneas for refractive purposes
- To minimize corneal hypoxia during scleral lens wear, it is important to limit the fluid reservoir thickness and to maximize the lens material's Dk/t value (1)
- Previous studies (2-5) have examined the effect of varying these two parameters on corneal edema, however, since then, new materials have entered the market, namely those with hyper-Dk values (200)


#### Results

- Two subjects (F, 24.5  $\pm$  0.5 years old) completed the study
  - The FRT of L1 and L2 significantly decreased over time (p=0.022), by 88.50 um (L1) and 120.50 um (L2) over 6 hrs
- There is a significant difference between the CCTs of L1 and L2 (p=0.664)
- L1 → CCT increased immediately at lens insertion (0.4% compared to baseline), reached a 3-4% increase after 45 mins and did not vary significantly thereafter (p=0.284)
- CCT did not increase for L2 at any time point; after 6 hours, CCT showed a 0.29% decrease compared to baseline, following natural corneal deswelling
- The mean Dk/t for L1 was 25.47 $\pm$ 0.56 and that for L2 was 53.11 $\pm$ 1.07
  - This demonstrates that there is 108.53% (or roughly twice as much) increase in supplementary oxygen provided to the cornea with the lens made of a higher Dk material
- This pilot study aims to compare the clinical impact on oxygen delivery to the cornea of scleral lenses manufactured with different gas permeable materials worn on a daily wear schedule
- L2's effect regarding corneal oxygenation increases over time; as CCT increased for L1, L2's CCT remained constant and therefore the difference between the two increased with time.

#### **Materials and Methods**

- Investigational pilot study
- Comparison of two pairs of SL made of different
  material (see lens parameters in table 1)
  - Lens 1 (L1): Rofuflocon D (Dk = 100)
  - $\circ$  Lens 2 (L2): Tisilfocon A (Dk = 200)
- Participants were randomly assigned to wear L1 or L2 for 6 hours at Visit 1, and the other lens at Visit 2 (>72hrs from V1)
- Lenses were adjusted for each participant and were purposefully fit with a central clearance of 400 um and a lens thickness of 350 um to favor corneal swelling
- Both lens thickness and reservoir thickness were kept constant for each participant. Each lens was adjusted with toric peripheries (200 um diff) to minimize tear exchange





- Central AS-OCT measurements made at 45 mins (t1), 90 mins (t2), 2 hrs (t3), 4 hrs (t4), 6 hrs (t5) and thereafter lens removal (t6)
  - These measurements were taken at the same time of day for each participant to minimize the effect of diurnal corneal thickness variation
- Central corneal thickness (CCT), fluid reservoir thickness (FRT) and the lens Dk/t were documented and analyzed using a repeated measures ANOVA (SPSS 24)
- A paired t-test was used to analyze the difference between L1 and L2
- Only the results from OD were analyzed

#### TABLE 1

#### Lens parameters – OneFit MED (Laboratoires Blanchard, Sherbrooke, Canada)

|               | OD    |                  | os    |                  |
|---------------|-------|------------------|-------|------------------|
| Participant 1 | Sag   | 4450 μm          | Sag   | 4450 μm          |
|               | М     | -150 μm          | М     | -200 μm          |
|               | L     | -50 μm           | L     | -50 μm           |
|               | Edge  | +125 μm / -75 μm | Edge  | +125 μm / -75 μm |
|               | Diam  | 15.6 mm          | Diam  | 15.6 mm          |
|               | Power | -6.75 D          | Power | -7.75 D          |
|               | СТ    | 350 μm           | СТ    | 350 μm           |
| Participant 2 | Sag   | 4600 μm          | Sag   | 4600 μm          |
|               | М     | -150 μm          | м     | -150 μm          |
|               | L     | -50 μm           | L     | STD              |
|               | Edge  | +125 μm / -75 μm | Edge  | +125 μm / -75 μm |
|               | Diam  | 15.6 mm          | Diam  | 15.6 mm          |
|               | Power | -7.12 D          | Power | -6.37 D          |
|               | СТ    | 350 μm           | СТ    | 350 μm           |

#### **Discussion and Conclusion**

 This pilot study suggests that a higher Dk material is associated with a significant reduced hypoxic stress to the cornea, over 6 hours of scleral lens wear

 The corneas of the participants used in this study were thinner than normal – we cannot extrapolate these results for thicker corneas

 Future studies on a larger group of participants are needed to confirm if higher Dk materials may become the norm to prescribe scleral lenses whenever lowering hypoxic stress to the cornea is required

#### References

1. Michaud L, van der Worp E, Brazeau D, Warde R, Giasson CJ. Predicting estimates of oxygen transmissibility for scleral lenses. Cont Lens Anterior Eye. 2012;35(6):266-71.

- 2. Pullum K, Stapleton FJ. Scleral lens induced corneal swelling: what is the effect of varying Dk and lens thickness? CLAO J. 1197 Oct;23(4):259-63.
- 3. Vincent SJ, Alonso-Caneiro D, Collins MJ, Beanland A, Lam L, Lim CC, et al. Hypoxic Corneal Changes following Eight Hours of Scleral Contact Lens Wear. Optom Vis Sci. 2016;93(3):293-9.
- 4. Compan V, Oliveira C, Aguilella-Arzo M, Molla S, Peixoto-de-Matos SC, Gonzalez-Meijome JM. Oxygen diffusion and edema with modern scleral rigid gas permeable contact lenses. Invest Ophthalmol Vis Sci. 2014;55(10):6421-9.

5. Kim YH, Tan B, Lin MC, Radke CJ. Central Corneal Edema with Scleral-Lens Wear. Curr Eye Res. 2018;43(11):1305-15.