Back-Surface Toric Scleral Lens Stabilization as a Fuction of the Amount of Toricity

Javier Rojas OD, FAAO, FSLS, Centro de Lentes de Contacto (Spain)
Javier Sebastián OD, QVision Almería (Spain)
Reinier Stortelder, BOptom, Eaglet Eye (The Netherlands)

Introduction

 irregular sclera. ${ }^{5}$ Now, profilometry can predict the shape of the sclera before the scleral lens is fitted. ${ }^{4}$

 measuring the lower and higher sagittal height meridian and differences in sagittal height between meridians or quadrants. ${ }^{6}$
Purpose Results

The aim was to analyze whether the amount of toricity applied to the back surface of scleral lenses can affect to lens tabilization and rotation.

Methods

Twenty-one scleral fittings on irregular corneas (including keratoconus, K and post-Lasik ectasia) were retrospectively analyzed. These eyes were previously measured with the Eye Surface Profiler (ESP, Eaglet Eye, the Netherlands). Three maps of each eye were obtained. A previous study showed a higher correlation between the lowest sagittal height meridian hereafter min oc sag/flat meridian) and the axis of the flattest meridian of he lens on the eye when the min oc sag/flat meridian is measured at a cord of 15 mm , instead of at 14 or 14.5 mm cords. ${ }^{6}$ Thereby, the mean axis of the min oc sag/flat meridian for a cord of 15 mm was obtained from the three measurements (Image 1).

CD Flexfit (Paragon Vision Sciences, Gilbert, AZ) and Zenlens (Bausch + omb's Specialty Vision Products, Rochester, NY) scleral lenses with diameters between 15.5 and 17 mm and toricities ranging from 50 to 420 microns of sagittal height difference between two principal meridians were fitted and prescribed for these eyes

Both designs are labelled with marks at the flattest meridian. The lens marking position with diagnostic lenses was measured by lining up the sit lamp beam. An image of each prescribed lens was recorded and the axis of the flattest meridian of the lens was then measured with software o determine the angles with precision (Goniotrans, FacoElche, https:// www.goniotrans.com) (Image 2). This was recorded as the lens flat axis.
(1) The difference between the min oc sag/flat meridian and the lens flat axis was recorded as the lens rotation.

Regression analysis was performed to test for associations between the lens rotation and the variables (2) prescribed lens toricity and (3) prescribed lens diameter.
(4) Lens rotation for three different groups of prescribed toricity was also analyzed ($\mathbf{5 0}$ to $\mathbf{1 0 0}$ microns, 126-200 microns and >200 microns)

```
Disclousures: 
\begin{array}{l}{R,}\\{\mathrm{ and this poster presentation has been partially}}\\{\mathrm{ funded by Eagle Eye (The Netherland)}}\end{array}
```


Image 1. Profilometry in a patient with an asymmetric sclera. The axis of the min sag meridian was at 78 degrees.

Image 2. A back-surface toric scleral lens with 90 microns of marks was at 68 degrees. Rotation 10 degrees clockwise.
(1) The mean overall absolute lens rotation was 16 ± 14 degrees. The lenses rotated counterclockwise a mean of 14 ± 13 degrees in 12 fittings and clockwise a mean of 17 ± 16 degrees in 9 fittings. The mean absolute was $12+16$. No statistically significant differences wer was 12 ± 6. No stans rotasion was calculated from found wh len rolation was calculated from . ($\mathrm{p}=0.18$)
(2) A weak but significant negative correlation was found between the amount of prescribed toricity and the lens rotation ($r=-0.49, p=0.02$) (Image 3)
(3) No significant correlation was found between the variables of lens rotation and prescribed lens diameter ($r=0.25, p=0.28$).
(4) Mean absolute lens rotation was 23 ± 15 degrees for the group with toricities between 50 to 125 microns, 14 ± 13 degrees for the group with between 126 to 200 microns and 6 ± 4 degrees for the group above 200 microns ($\mathrm{p}=0.04$) (Table 1)

Image 3: linear regression analysis

Toricity
$50 \leq 125$ microns
$126 \leq 200$ microns
>200 microns

Table 1: rotation in different groups of toricity

Discussion and Conclusions

Some lens rotation is observed, even if the axis with diagnostic lenses is taken as a reference or lens stabilization is predicted through the min oc sag/flat meridian provided by the ESP. The lens marking position with diagnostic enses has been used preferentially to determine the final lens stabilization. However, practitioners could also use the ESP. No significant differences in final lens rotation were found between the two methods. These results hav potential clinical implications particularly for the prescription of front toric surfaces, microvaults and/or notchings that relay on how the lens stabilizes. Rotation on the final lens can be expected, particularly when the prescription is for low amounts of toricity. In this case, lenses may need to be reordered to correct the axis of a front toric surface or relocate the microvault or the notch. However, considerably lower lens rotation is observed for higher sagittal height differences between two principal meridians. For back-surface toricities above 200 microns, the practitioner can be very confident about the ocular flat axis provided by the ESP to design the lenses, and there should be a lower lens reorder rate related to rotation.

References

