

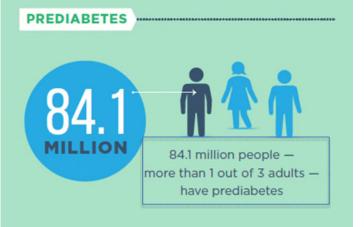
Preventing Diabetes: From Theory to Reality Vanita R. Aroda, MD

Director, Diabetes Clinical Research Brigham and Women's Hospital, Boston, MA Faculty, Harvard Medical School

25th Annual Southern California Permanente Medical Group Diabetes Symposium Nov 15, 2019

Disclosures

Consultant: Adocia, Astra Zeneca, BD, Novo Nordisk, Sanofi, Zafgen


Employee: Merck Research Laboratories (Spouse)

Research Support: Astra Zeneca/BMS, Calibra, Eisai, Fractyl, Janssen, Novo Nordisk, Sanofi, Theracos

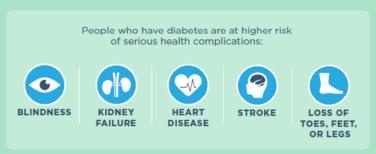
A SNAPSHOT

2 out of **5**

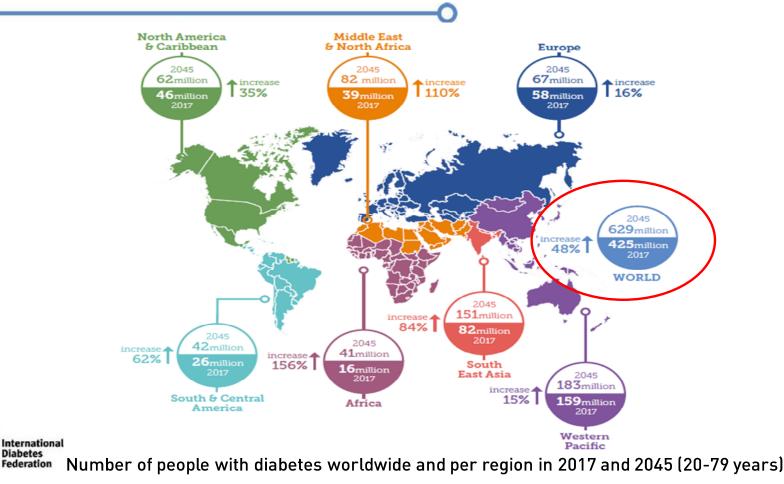
2 out of every 5 Americans are expected to develop type 2 diabetes in their lifetime.

Risk of death for adults with diabetes is

than for adults without diabetes



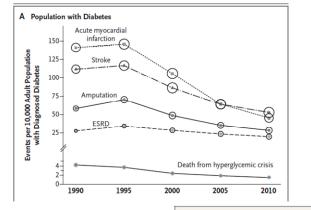
g out for a don't know they have prediabetes



More than 5,000 youth diagnosed each year in 2011 and 2012

https://www.cdc.gov/diabetes/library/socialmedia/infographics.html Accessed 01 Nov 2019

Diabetes: A global emergency


Prevalence of Prediabetes by BMI and Race/Ethnicity in the PORTAL Multisite Cohort (KP, HealthPartners, Denver Health)

- 4,906,238 individuals aged <a> 20 years, 2012-2013
- Prediabetes prevalence: 33%
- Higher burden of prediabetes (and diabetes) at lower BMIs in racial/ethnic minorities than whites

	White	Black	Hispanic	Asian	Hawaiian/Pacific Islander	American Indian/Alaskan Native	All
No.	2,454,388	467,994	1,058,351	620,813	67,190	26,324	4,906,238
Prediabetes prevalence							
Overall	31.0 002830.9-31.1)	32.0 (31.9-32.1)	35.3 (35.2-35.4)	37.1 (37.0-37.2)	36.7 (36.4-37.1)	31.1 (30.6-31.7)	33.4 (33.3-33.5)
BMI*							
Underweight	21.1 (20.6-21.5)	23.9 (22.4-25.4)	23.8 (22.4-25.2)	29.5 (28.8-30.3)	29.5 (25.7-33.4)	17.5 (12.6-22.4)	23.9 (23.5-24.3)
Normal weight	24.4 (24.3-24.5)	26.9 (26.6-27.2)	29.3 (29.0-29.5)	33.0 (32.7-33.2)	33.7 (33.0-34.4)	26.3 (25.2-27.4)	26.8 (26.7-26.9)
Overweight	31.9 (31.8-32.0)	31.2 (31.0-31.5)	35.6 (35.4-35.7)	38.1 (38.0-38.3)	37.5 (36.9-38.2)	31.4 (30.5-32.4)	34.3 (34.2-34.3)
Obese class 1	35.0 (34.9-35.1)	33.3 (33.0-33.6)	37.5 (37.3-37.7)	39.3 (39.0-39.6)	37.1 (36.3-37.9)	32.3 (31.1-33.5)	36.7 (36.6-36.8)
Obese class 2	35.4 (35.2-35.6)	34.0 (33.6-34.4)	36.8 (36.5-37.1)	37.2 (36.6-37.7)	35.1 (33.9-36.4)	33.9 (32.1-35.6)	36.4 (36.3-36.5)
Obese class 3	35.1 (34.8-35.4)	34.8 (34.3-35.3)	35.6 (35.1-36.1)	34.1 (33.1-35.2)	34.9 (33.2-36.7)	34.3 (31.6-37.0)	35.8 (35.5-36.0)
Obese class 4	35.3 (34.5-36.0)	36.8 (35.5-38.2)	33.9 (32.5-35.3)	30.2 (26.4-33.9)	37.7 (32.5-43.0)	34.2 (29.6-38.8)	35.9 (35.3-36.5)
P for trendt	0.016	0.039	0.102	0.896	0.377	0.016	0.039

Zhu Y et al Diabetes Care 2019 Sep 19

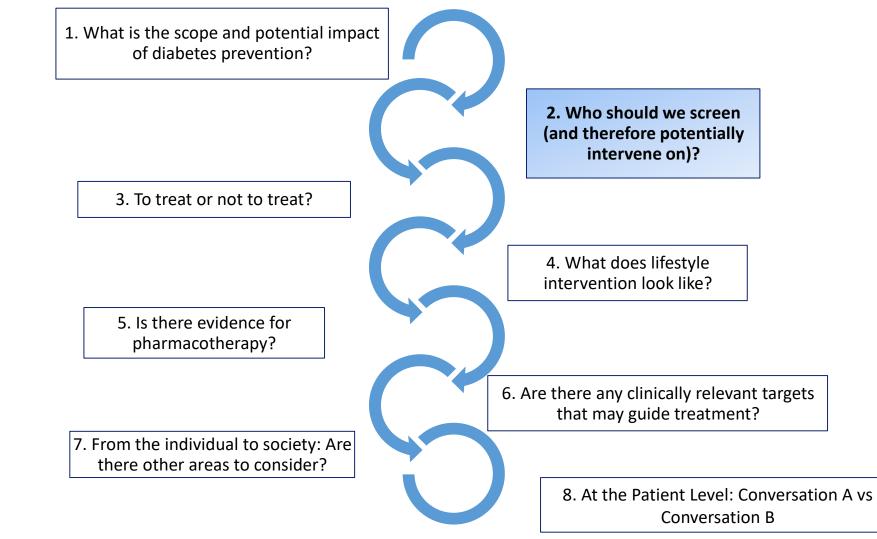
"The annual numbers of amputations, cases of endstage renal disease, and strokes continue to increase because of the large increase in the number of prevalent cases of diabetes."

Variable		Change, 199				
	1990	1995	2000	2005	2010	Absolute Change (95% CI)
No. of adults with diagnosed diabetes	6,536,163	7,862,661	11,799,201	16,066,108	20,676,427	
Acute myocardial infarction						
No. of cases	140,122	183,605	191,011	158,616	135,743	-4379
No./10,000 persons (95% CI)	141.1 (125.3 to 156.8)	145.9 (130.9 to 160.9)	105.7 (96.1 to 115.2)	64.2 (57.4 to 70.9)	45.5 (34.6 to 56.4)	-95.6 (-114.6 to -76.6)
Stroke						
No. of cases	127,016	162,895	178,755	171,429	186,719	59,703
No./10,000 persons (95% CI)	111.8 (98.9 to 124.7)	116.6 (104.3 to 128.9)	86.2 (78.8 to 93.7)	64.1 (58.1 to 70.1)	52.9 (41.1 to 64.7)	-58.9 (-76.2 to -41.6)
Amputation						
No. of cases	50,364	76,531	80,658	69,074	73,067	22,703
No./10,000 persons (95% CI)	58.4 (49.3 to 67.4)	70.4 (59.1 to 81.7)	48.7 (41.6 to 55.9)	35.5 (30.9 to 40.1)	28.4 (19.4 to 37.3)	-30.0 (-42.6 to -17.4)
End-stage renal disease						
No. of cases	17,763	29,259	41,477	46,917	50,197	32,434
No./10,000 (95% CI)	27.9 (25.7 to 30.0)	34.5 (31.9 to 37.1)	28.6 (27.6 to 29.7)	23.6 (22.8 to 24.5)	20.0 (19.1 to 20.9)	-7.9 (-10.2 to -5.5)

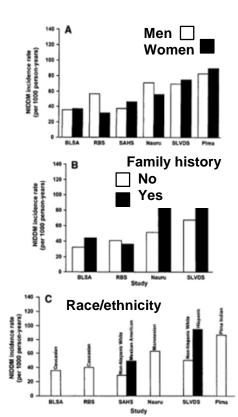
Gregg EW et al NEJM 2014; 370:1514-23.

What is the potential impact of diabetes prevention?

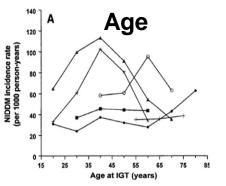
"While the average adult with diabetes in the USA has a lower risk of CVD than in previous decades, the average adult in the general population has an increased risk of diabetesrelated CVD than in previous decades because of the large increase in diabetes prevalence."



Personal Take-Home #1 (On scope and potential impact):


"The burden of the wide spectrum of complications in those with diabetes will ultimately be influenced by efforts to prevent diabetes."

Harding JL et al; Diabetologia 2019;62(1):3-16


What We Knew About the Risk of Progression from Impaired Glucose Tolerance to Diabetes before the DPP

An Analysis of Six Prospective Studies

- Baltimore Longitudinal Study of Aging (MD)
- Rancho Bernardo Study (CA)
- San Antonio Heart Study (TX)
- Micronesian island of
 Nauru in Pacific Ocean
- San Luis Valley Diabetes Study (CO)
- Pima Indian Study (Gila River Indian Community, AZ)

Diabetes Prevention Program Eligibility Criteria

- High-risk individuals
 - Impaired Glucose Tolerance: 2 hour post-challenge glucose 140 - 199 mg/dl, <u>and</u>
 - Fasting glucose 95 125 mg/dl

(American Indians < 125 mg/dl)

- Body mass index \geq 24 kg/m² (Asians \geq 22 kg/m²)
- Age \geq 25 years
- All ethnic groups goal of 50% from high risk populations

Screening for Prediabetes or Diabetes in Asymptomatic Adults

Table 2.3-Criteria for testing for diabetes or prediabetes in asymptomatic adults

1. Testing should be considered in overweight or obese (BMI ≥25 kg/m² or ≥23 kg/m² in Asian Americans) adults who have one or more of the following risk factors:

- First-degree relative with diabetes
- High-risk race/ethnicity (e.g., African American, Latino, Native American, Asian American, Pacific Islander)
- History of CVD
- Hypertension (≥140/90 mmHg or on therapy for hypertension)
- HDL cholesterol level <35 mg/dL (0.90 mmol/L) and/or a triglyceride level >250 mg/dL (2.82 mmol/L)
- Women with polycystic ovary syndrome
- Physical inactivity
- Other clinical conditions associated with insulin resistance (e.g., severe obesity, acanthosis nigricans)
- 2. Patients with prediabetes (A1C \geq 5.7% [39 mmol/mol], IGT, or IFG) should be tested yearly.
- 3. Women who were diagnosed with GDM should have lifelong testing at least every 3 years.
- 4. For all other patients, testing should begin at age 45 years.
- 5. If results are normal, testing should be repeated at a minimum of 3-year intervals, with consideration of more frequent testing depending on initial results and risk status.

Criteria Defining "Prediabetes"

Table 2.5—Criteria defining prediabetes* FPG 100 mg/dL (5.6 mmol/L) to 125 mg/dL (6.9 mmol/L) (IFG)

2-h PG during 75-g OGTT 140 mg/dL (7.8 mmol/L) to 199 mg/dL (11.0 mmol/L) (IGT)

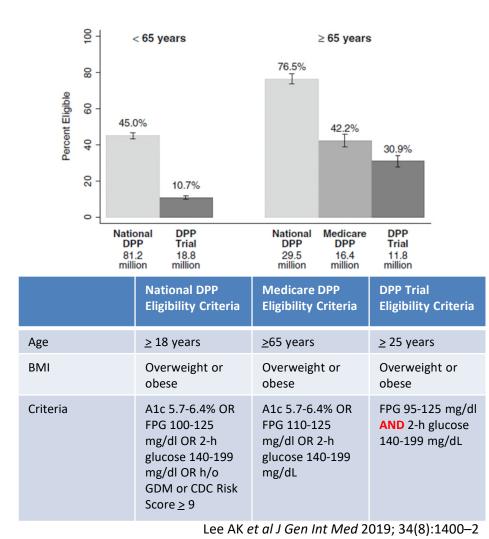
OR

OR

A1C 5.7-6.4% (39-47 mmol/mol)

*For all three tests, risk is continuous, extending below the lower limit of the range and becoming disproportionately greater at the higher end of the range.

" 'Prediabetes' is the term used for individuals whose glucose levels do not meet the criteria for diabetes but are too high to be considered normal... Prediabetes should not be viewed as a clinical entity in its own right but rather as an increased risk for diabetes and cardiovascular disease."


Diabetes Care

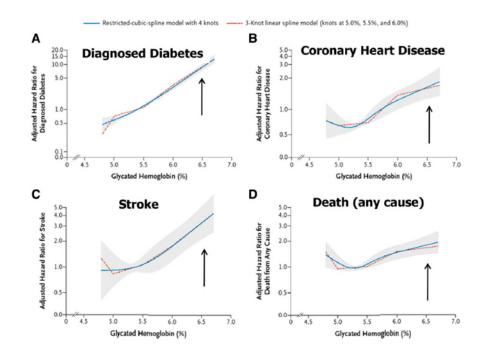
STANDARDS OF

"Prediabetes": Are There Problems With This Label? Yes, the Label Creates Further Problems!

Diabetes Care 2016;39:1468–1471 | DOI: 10.2337/dc15-2113

- Risk of progressing to diabetes in the DPP (both Impaired Fasting Glucose and Impaired Glucose Tolerance): ~50% over 10 years
- ADA-defined prediabetes (86 million): 2%/year
- Risk of disease-labeling of many lower-risk people for whom no evidence exists
- [WHO: "Intermediate hyperglycemia"]

"Prediabetes": Are There Problems With This Label? No, We Need Heightened Awareness of This Condition!


Diabetes Care 2016;39:1472–1477 | DOI: 10.2337/dc16-1143

1. The risk for progression of diabetes is present at the lower cut points suggested for diagnosing prediabetes.

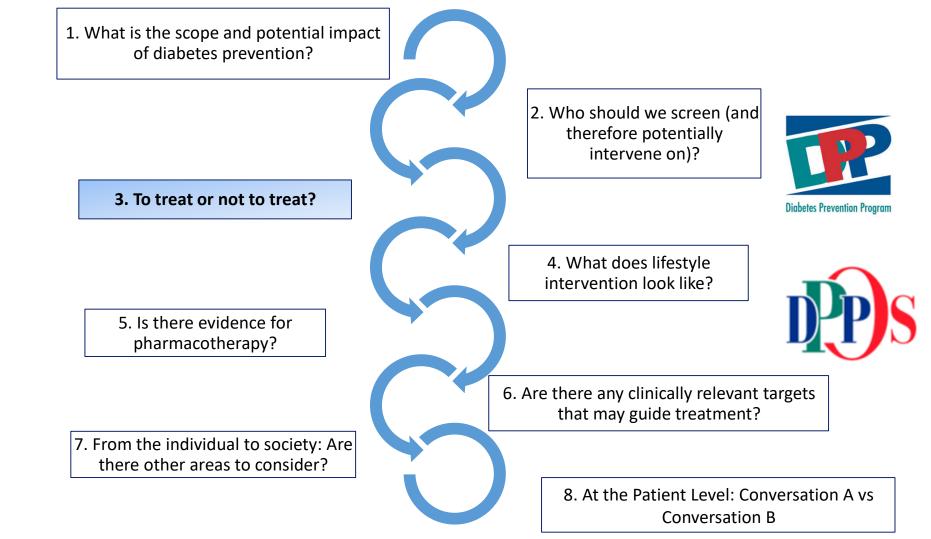
2. There are significant clinical implications for prediabetes for microvascular disease.

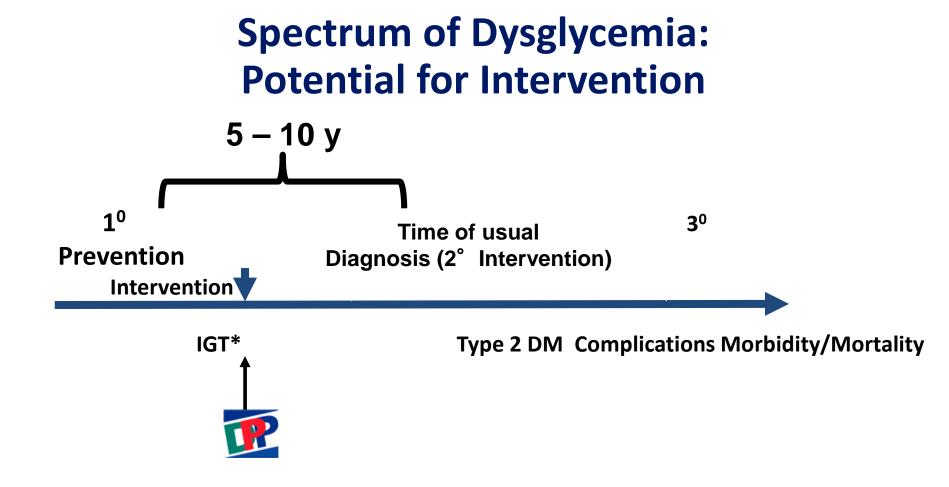
3. Prediabetes identifies a cohort for which there needs to be a heightened awareness of cardiovascular disease risk and, therefore, further evaluation.

4. Lifestyle interventions to prevent type 2 diabetes are effective among persons at increased risk.

Atherosclerosis Risk in Communities (ARIC) Study: n=11,092

Recommendation

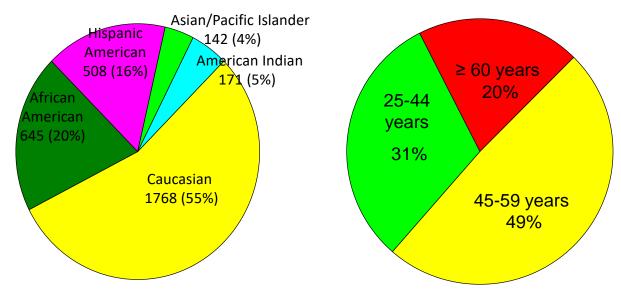

3.7 Prediabetes is associated with heightened cardiovascular risk; therefore, screening for and treatment of modifiable risk factors for cardiovascular disease is suggested. B



Personal Take-Home #2 (on screening):

'Prediabetes' (or 'Intermediate hyperglycemia') represents a part of the continuum of risk, for both diabetes and cardiovascular disease, and thus individuals at risk of diabetes or cardiovascular disease should be screened.

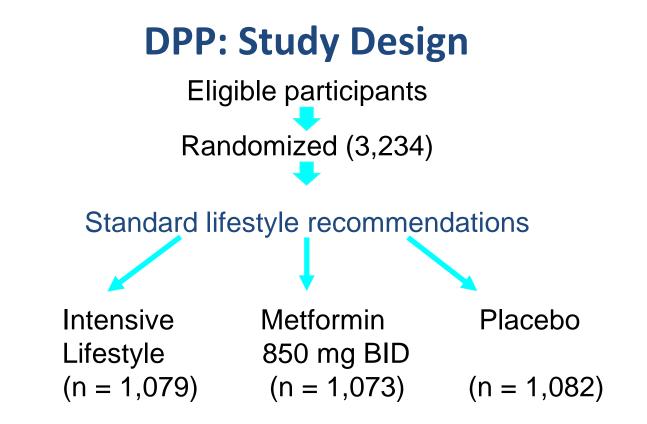
*IGT: Impaired Glucose Tolerance


DPP Goals: Primary Objective

Can we prevent or delay the development of type 2 diabetes in persons at high risk?

(impaired glucose tolerance, elevated fasting glucose levels, and overweight or obese)

DPP Population was heterogeneous, facilitating generalizability and translation of results


•68% were women, including 350 women with a history of gestational diabetes

- •Mean age: 51 years
- •Mean BMI 34 kg/m2

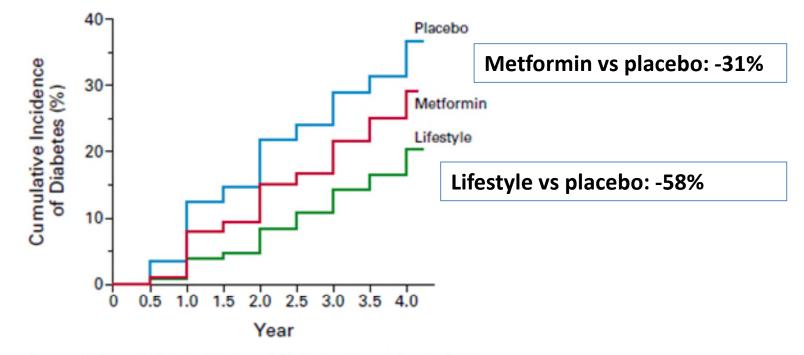
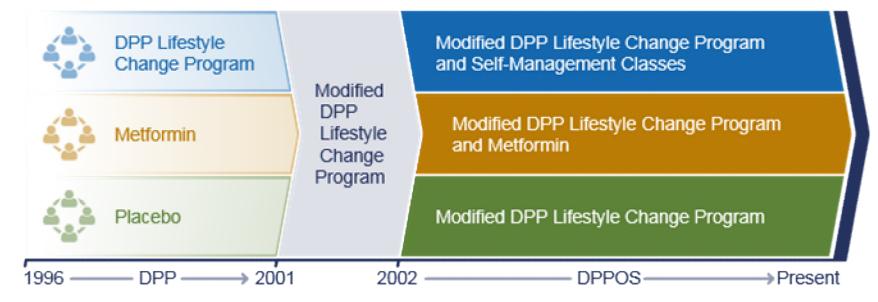
•Mean FPG 107 mg/dl, mean 2-hour postchallenge glucose 165 mg/dl

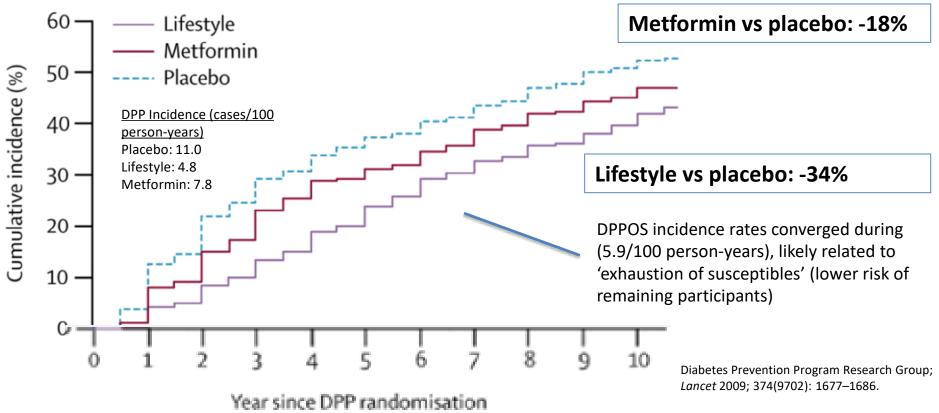
•Baseline HbA1c 5.9%

The DPP Research Group, Diabetes Care 23:1619-29, 2000

<u>Primary Outcome</u>: Development of diabetes based on annual OGTT (fasting and/or 2-hour glucose value) or semiannual FPG

Effects of intensive lifestyle intervention or metformin on diabetes prevention/delay: 1996-2001


Figure 2. Cumulative Incidence of Diabetes According to Study Group.

Continued follow up of DPP Cohort (86% eligible) in DPPOS

DPP & DPPOS Timeline

DPPOS: 10 years post-randomization

Hamman RF et al; Diabetes 2015; 64:989-998

10-years: Diabetes Prevention is Cost-Effective

Compared to the placebo intervention:

- The lifestyle intervention cost ~\$1,700 more per person over 10 years but substantially improved quality-of-life "cost-effective"
- The metformin intervention cost ~\$100 less per person over 10 years and marginally improved quality-of-life "cost-saving"

Translational Impact of DPP

Congressionally-established National Diabetes Prevention Program

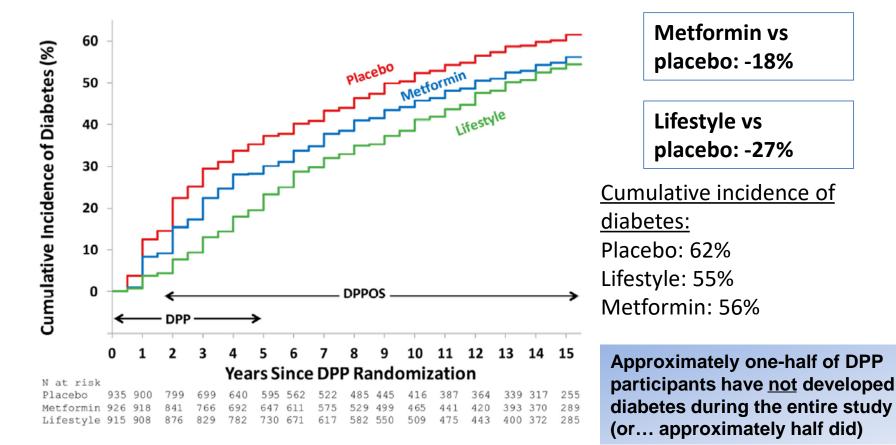
National Diabetes Education Program/HHS

Health System Programs

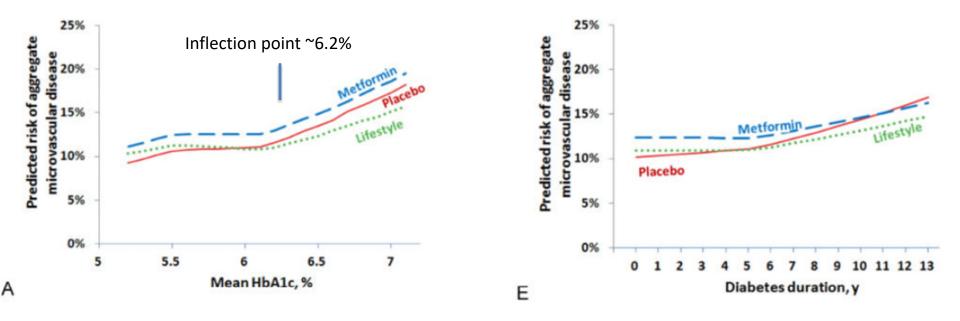
State Programs

CMS

ADA Consensus


US Department of Veterans Affairs

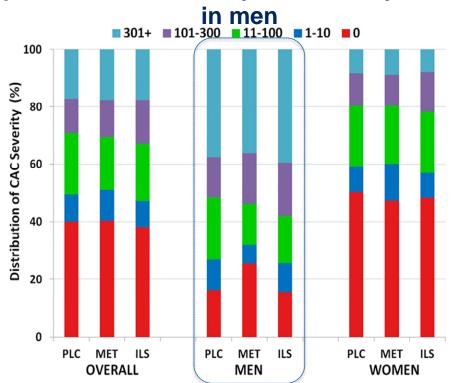
> International Programs


Community Programs (e.g. Y-DPP; United Health Group) **Indian Health Service**

Workplace Intervention Programs

DPP/DPPOS: 15-year follow-up (1996-2013)

Composite of microvascular outcomes (nephropathy, neuropathy, retinopathy) at 15 years was 28% less in those <u>who</u> <u>did not progress to diabetes</u>, without difference by treatment

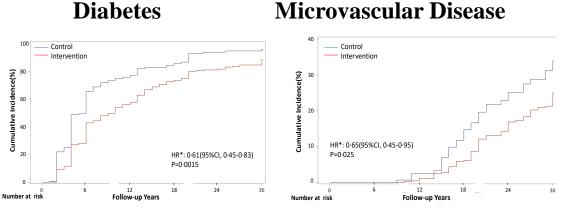


Favorable effects of intervention on cardiovascular risk factors

- DPP:
 - Lifestyle: improvements in blood pressure, HDL, TG, LDL particle size, biomarkers of inflammation, coagulation, endothelial dysfunction, metabolic syndrome (fewer BP and lipid meds)
 - Metformin: modest effects on TG and novel biomarkers
- DPPOS (10 years): no significant differences between treatment groups

Development of diabetes accompanied by unfavorable changes in cardiometabolic factors in all 3 arms

Metformin reduces presence and severity of Coronary Artery Calcification (CAC)

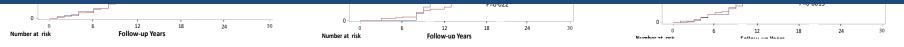


MET vs. Placebo lowered the presence and severity of CAC in men, with no effect in women
No reduction in the prevalence of clinically significant plaque (Agatston score > 100), suggesting that metformin affects smaller more recently calcified plaques, rather than well-established plaques

Goldberg RB, Aroda VR, et al. Circulation May 2017

30-year follow up of the Da Qing Diabetes Prevention Study

(n=577, 6 years of lifestyle intervention vs control in IGT)

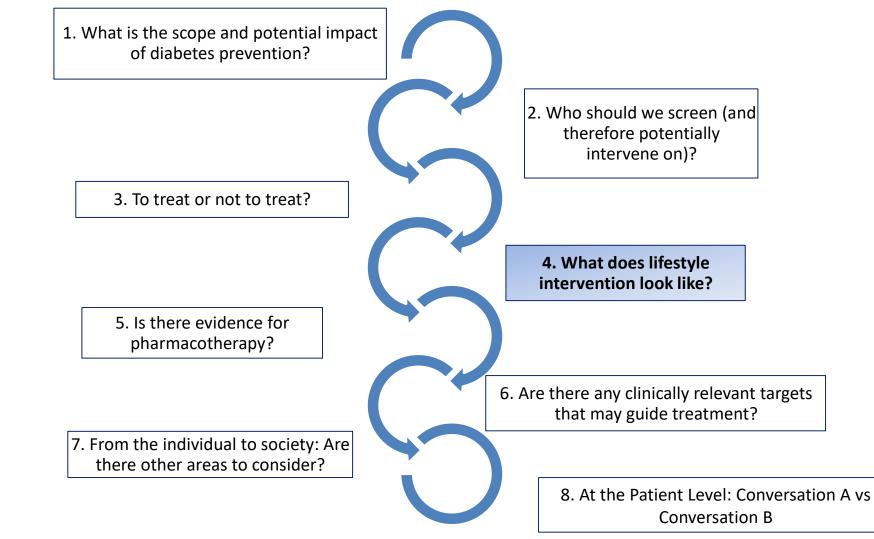


At 30 years:

- 39% reduction in diabetes, median delay in diabetes by 3.96 years
- 33% reduction in CV death
- 26% reduction in CVD events
- 26% reduction in all-cause mortality
- 35% reduction in microvascular complications
- Increase in 1.44 life years

Multivariate models that corrected for time of onset of diabetes nullified the significance of the intervention effect for each of the primary outcomes.

I.e. Reduced incidence of these outcomes is accounted for by the delay in diabetes onset in the intervention group.


Gong Q et al Lancet Diabetes Endocrinol. 2019;7(6):452-461

Personal Take-Home #3 (To treat or not to treat? To treat!):

Diabetes prevention interventions in patients at risk delay/prevent the progression to type 2 diabetes. The ability to prevent exposure to hyperglycemia (level, duration, diabetes) is associated with significant reduction in diabetes-related morbidity and mortality.

Intensive Lifestyle Intervention

Behavioral Modification

An intensive program with the following specific goals:

 ≥ 7% loss of body weight and maintenance of body weight loss

• ≥150 minutes per week of moderate physical activity

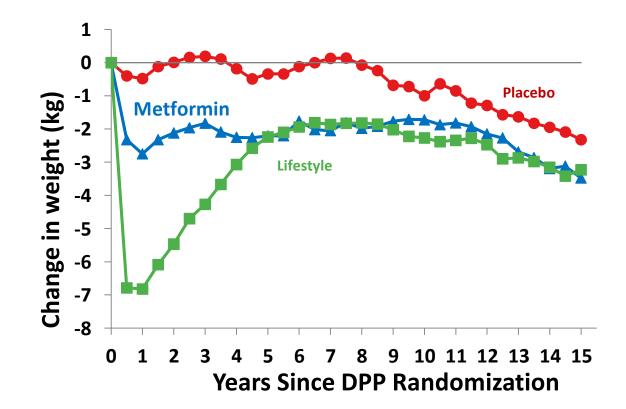
Reminder: DPP was an EFFICACY study!

- Intensive lifestyle intervention:
 - Individual lifestyle coaches and access to support staff:
 - Dietitian
 - Behavioral counselor
 - Exercise specialist
 - 16-session individual curriculum, covering nutrition, exercise, and behavioral self-management
 - Kept food journals (mandatory requirement in run-in period)
- The "Toolbox"

Lifestyle Intervention in the DPP

"The lifestyle participants went through what amounts to a kind of graduatelevel education in how to change their lives." "In some respects, the coaches and others in the trial became the *federally funded equivalent of nagging relatives,* determined to keep participants adherent to the trial interventions and deeply motivated."

"Nike shoes, gym memberships, grocery vouchers, digital scales...We even bought one participant a treadmill."


"Vanita, we even went knocking on doors. We did whatever it took."

Brink S. Health Affairs 2009; 28(1):57-62.

"Standard lifestyle education" (1996-2002)

- Both metformin and placebo received standard lifestyle recommendations
- Written information, plus
 - Annual 20-30 minute individual session, emphasizing the importance of a healthy lifestyle
- All participants encouraged to follow the Food Guide Pyramid and the equivalent of a National Cholesterol Education Step 1 diet, to reduce weight, and increase their physical activity

Effects of Intervention on Body Weight during DPP and DPPOS

National Diabetes Prevention Program

1st 6 months

Module names	Module names
Burn More Calories Than You Take In	Introduction to the Program
Shop and Cook to Prevent T2	
Manage Stress	Get Active to Prevent T2
Find Time for Fitness	Track Your Activity
Cope with Triggers	
Keep Your Heart Healthy	Eat Well to Prevent T2
Take Charge of Your Thoughts	
Get Support	Track Your Food
Eat Well Away from Home	Get More Active
Stay Motivated to Prevent T2	

Next 6 months

Module names

When Weight Loss Stalls

Take a Fitness Break

Stay Active to Prevent T2

Stay Active Away from Home

More About T2

More About Carbs

Have Healthy Food You Enjoy

Get Enough Sleep

Get Back on Track

Prevent T2-for Life!

https://nccd.cdc.gov/DDT_DPRP/Registry.aspx

Centers for Disease Control and Prevention CDC 24/7: Saving Lives, Protecting People™

National Diabetes Prevention Program

Diabetes Home > National Diabetes Prevention Program

Registry of All Recognized Organizations

The national registry of recognized diabetes prevention programs lists contact information for all CDC-recognized organizations that deliver evidence-based type 2 diabetes prevention programs in communities across the United States. All of these programs have agreed to use a CDC-approved curriculum that meets the duration, intensity, and reporting requirements described in the DPRP Standards 7 [PDF - 728KB]. Full recognition means that a program has demonstrated effectiveness by achieving all of the performance criteria detailed in the DPRP Standards.

Diabetes Prevention Recognition Program – Registry of Recognized Organizations

Show organizations by location:

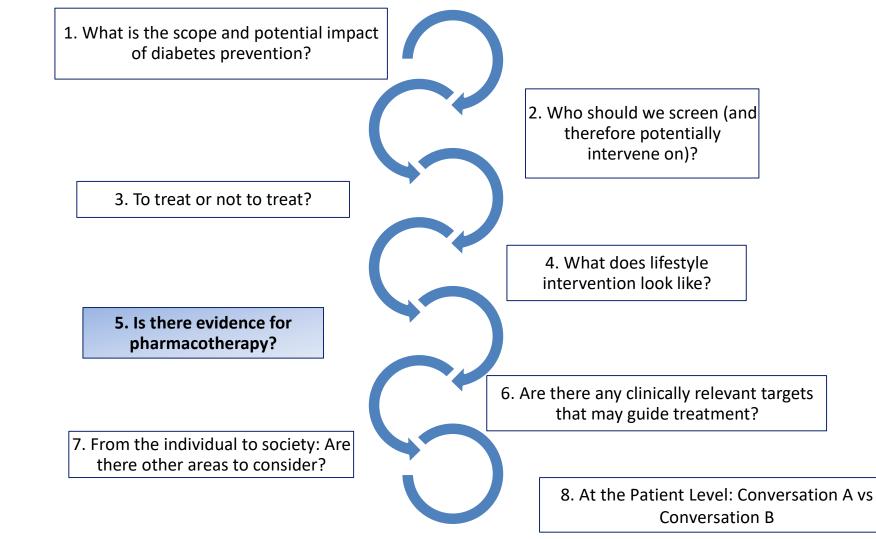
State: California

CDC A-Z INDEX V


Personal Take-Home #4 (What does lifestyle intervention look like?)

1. Favorite Dotphrase counseled on healthy lifestyle, handout provided etc etc

7


Intensive Lifestyle Intervention 2. Know (and utilize!) your local resources and support!

Post-script (Take-Home #4): Diabetes Risk Reduction Behaviors among US adults with Prediabetes

AMERICAN JOURNAL OF Preventive Medicine

Geiss LS et al, Am J Prev Med 2010 38:403-

Summary of select randomized controlled trials evaluating the prevention of

Study Title (country of conduct, year of publication, n)	Risk eligibility criteria	Duration of follow-up	Intervention	Risk reduction in diabetes incidence compared to control	
Da Qing Study (China, 1997, n=577)		6 years	Diet	31%	
			Exercise	46%	
			Diet + Exercise	42%	
			Control		
Finnish Diabetes	IGT; age 40-65 years; BMI > 25	3.2 years	Diet and activity	58%	
Prevention Study (Finland, 2001, n=522)	kg/m ²		Control		
Diabetes Prevention Program (US, 2002,	Diabetes Prevention IGT; elevated fasting glucose 95 –	2.8 years	Intensive lifestyle intervention	58%	
n=3,234) mg/dl (6.9 mmol/l) for native	mg/dl (6.9 mmol/l) for native		Metformin 850 mg BID	31%	
			Placebo		
STOP-NIDDM	IGT; elevated fasting glucose 5.6-7.7	3.3 years	Acarbose 100 mg TID	25%	
(multiple countries, 2002, n=1,429)	mmol/l; age 40-70 years; BMI 25-40 kg/m ²		Placebo		
XENDOS (Sweden,	BMI \geq 30 kg/m ² ; age 30-60 years	4 years	Orlistat 120 mg TID	37%	
2004, n=3,305)		-	Placebo		
Japanese IGT study	Males with IGT	4 years	Diet and exercise	67%	
(Japan, 2005, n=458)			Control		
Indian Diabetes	IGT, age 35-55 years	30 months	Lifestyle modification	29%	
Prevention			Metformin 250 mg BID	26%	
Programme (India,			Lifestyle modification +	28%	
2006, n=531)			metformin 250 mg BID		
		Control			

progression to diabetes, 1997-2006

**composite primary outcome of incident diabetes or death from any cause

Summary of select randomized controlled trials evaluating the prevention of progression to diabetes, 2006-2017

DREAM	IFG and/or IGT, age ≥ 30 years	3.0 years	Rosiglitazone 8 mg daily	60%**
(rosiglitazone)		-	Placebo	
(multiple countries,				
2006, n=5,269)				
DREAM (ramipril)	IFG and/or IGT, age ≥ 30 years	3.0 years	Ramipril (up to 15 mg per	No
(multiple countries,			day)	reduction**
2006, n=5,269)			Placebo	
Voglibose Ph-3	IGT, age 30-70 years, with additional	48.1 weeks	Voglibose 0.2 mg TID	41%
(Japan, 2009,	risk factor for type 2 diabetes		Placebo	
n=1,780)				
NAVIGATOR	IGT, fasting plasma glucose 95 -	5.0 years	Valsartan (up to 160 mg	14%
(valsartan)	<126 mg/dl (5.3 - <7.0 mmol/l) +		daily), and lifestyle	
(multiple countries,	cardiovascular		modification	
2010, n=9,306)	disease/cardiovascular risk		Placebo	
NAVIGATOR	IGT, fasting plasma glucose 95 - <	5.0 years	Nateglinide (60 mg before	No reduction
(nateglinide)	126 mg/dl (5.3 - < 7.0 mmol/l) +		meals three times daily)	
(multiple countries,	cardiovascular			
2010, n=9,306)	disease/cardiovascular risk			
			Placebo	
CANOE (Canada,	IGT, age 30-75 years (18-75 for	3.9 years	Rosiglitazone + metformin	66%
2010, n=207)	native Canadian ancestry), with at		(2 mg/500 mg BID)	
	least one risk factor for type 2		Placebo	
	diabetes			
ACT NOW (USA,	IGT, fasting plasma glucose between	2.4 years	Pioglitazone 45 mg daily	72%
2011, n=602)	95 and 125 mg/dl (5.3 and 6.9		Placebo	
	mmol/I), age 18 years or older, BMI ≥			
	25 kg/m ^{2,} at least one risk factor type			
	2 diabetes			
SCALE	Prediabetes, adults 18 years or	3 years	Liraglutide 3.0 mg	66%
Prediabetes	older; BMI \geq 30 kg/m ² or \geq 27 kg/m ²		Placebo	
(multiple countries,	with comorbidities			
2017, n=2,254)				

** composite primary outcome of incident diabetes or death from any cause

Aroda VR et al; Diabetologia 2017; 60(9):1601-1611

ADA Standards of Care on Pharmacotherapy for Diabetes Prevention

- Pharmacologic agents have been shown to decrease the incidence of diabetes to various degrees in those with prediabetes
- None are approved by the US FDA specifically for diabetes prevention
- Metformin has the strongest evidence base and demonstrated long-term safety as pharmacologic therapy for diabetes prevention

PHARMACOLOGIC INTERVENTIONS

Recommendations

3.5 Metformin therapy for prevention of type 2 diabetes should be considered in those with prediabetes, especially for those with BMI ≥35 kg/m², those aged <60 years, and women with prior gestational diabetes mellitus. A</p>

Effects of intensive lifestyle intervention or metformin on diabetes prevention/delay: 1996-2001

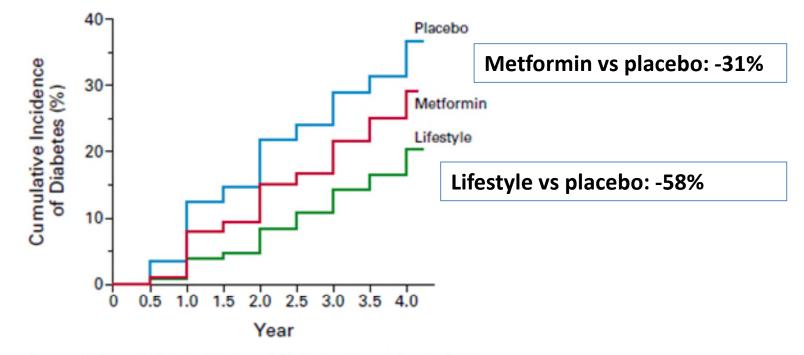
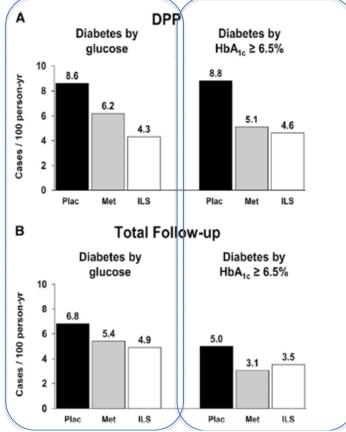
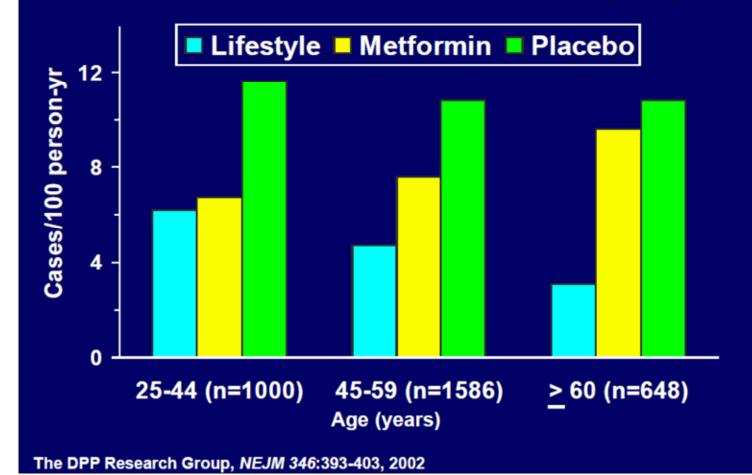
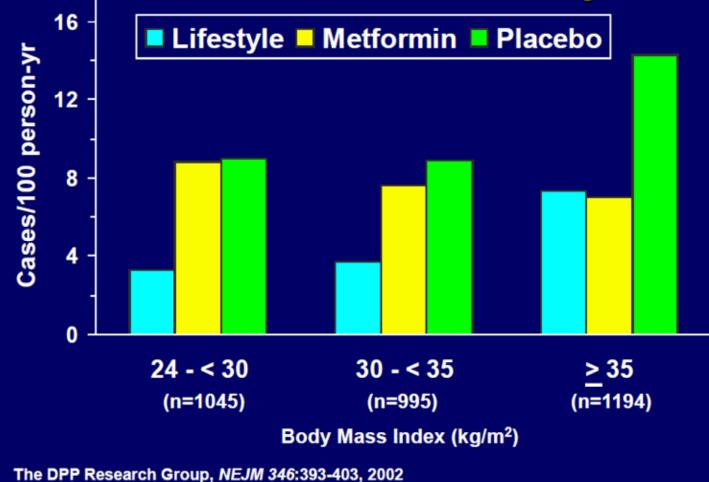



Figure 2. Cumulative Incidence of Diabetes According to Study Group.

What if we look at diagnosis of diabetes based on HbA1c >6.5%? (2010 ADA definition)

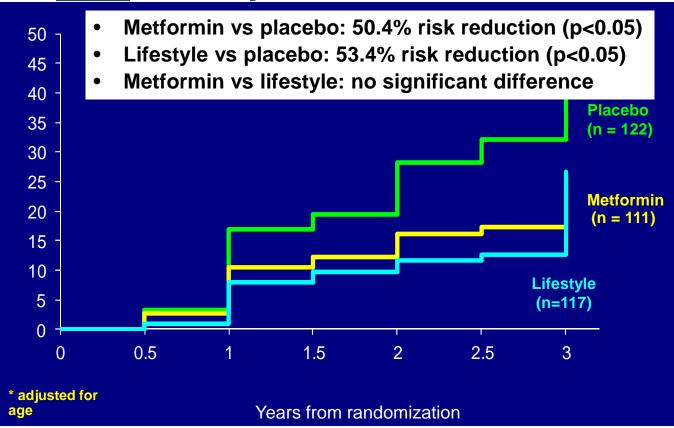


•By glucose criteria (FPG, OGTT): ILS was more effective than metformin in reducing the incidence of diabetes

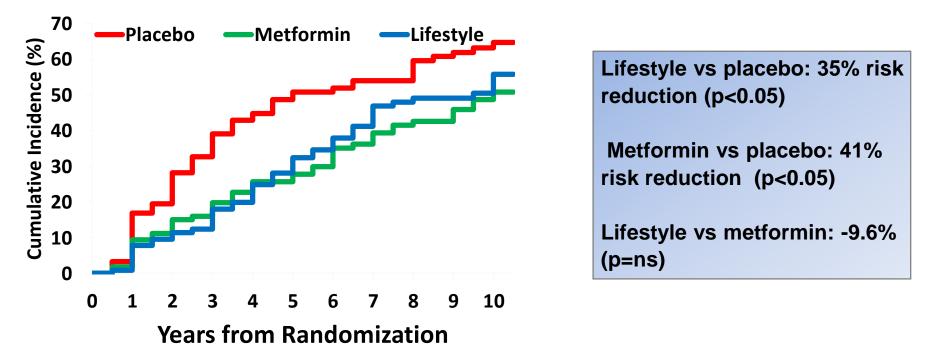

By HbA1c criteria: Metformin no different than ILS
DPP: 44% (met) vs 49% (ILS) reduction
DPP/DPPOS: 38% (met) vs 29% (ILS) reduction

Knowler WC et al Diabetes 2015

Diabetes Incidence Rates by Age

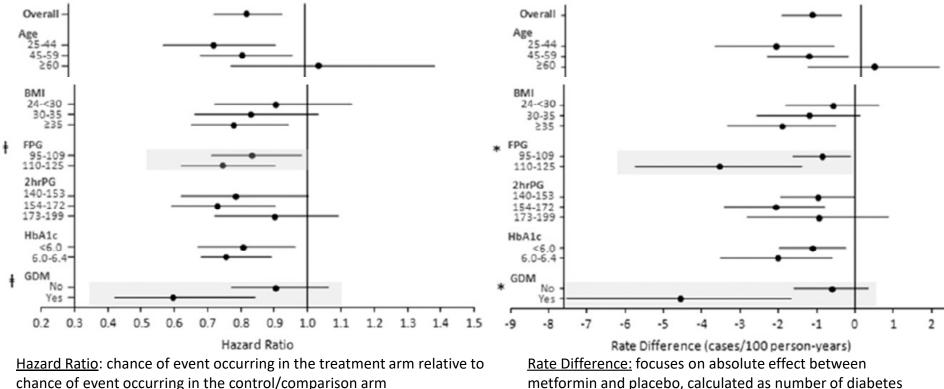

Diabetes Incidence Rates by BMI

No


Cumulative Incidence of Diabetes in DPP – Women with History of GDM

71% increased risk of progression to diabetes in women with h/o GDM in **DPP** compared to women without h/o GDM

Ratner RE et al JCEM 2008


10-Year Cumulative Incidence of Diabetes in Parous Women with a History of GDM

Women with a history of GDM in the placebo group had a 65% higher risk of developing diabetes compared with women without a GDM history (11.4/100 vs 6.9/100 person-years).

Aroda VR et al, JCEM 2015

Long-term Effects of Metformin on Diabetes Prevention: Identification of Subgroups that Benefited most in the DPP/DPPOS

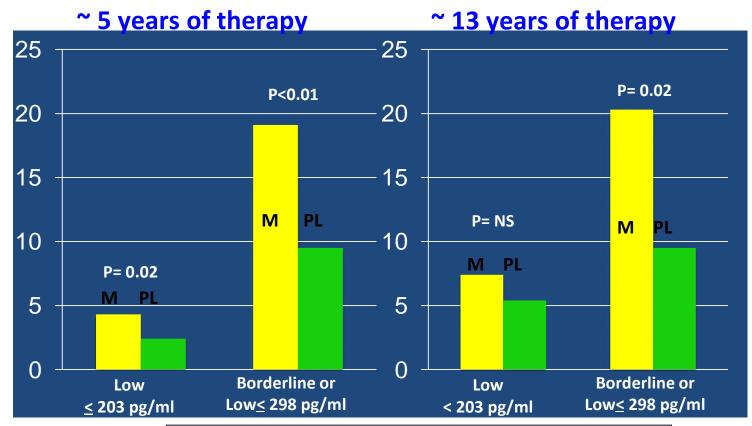
Diabetes Prevention Program Research Group; Diabetes Care 2019; 42(4):601-608.

<u>Rate Difference:</u> focuses on absolute effect between metformin and placebo, calculated as number of diabetes events divided by the total number of person-years of follow up.

Long-term Effects of Metformin on Diabetes Prevention: Identification of Subgroups that Benefited most in the DPP/DPPOS

- Regardless of how diabetes is diagnosed in follow up, long-term effects of metformin in DPP/DPPOS suggest that it remains effective overall, and its effect is <u>enhanced</u> in specific subgroups:
 - Those with higher baseline fasting glucose
 - Those with higher baseline HbA1c
 - Women with a history of GDM

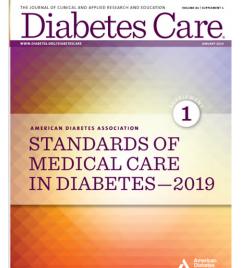
"These results should help to prioritize those groups at high risk of developing diabetes who will benefit most from being treated with metformin."


Diabetes Prevention Program Research Group; Diabetes Care 2019; 42(4):601-608.

Metformin and B12 Deficiency

Background

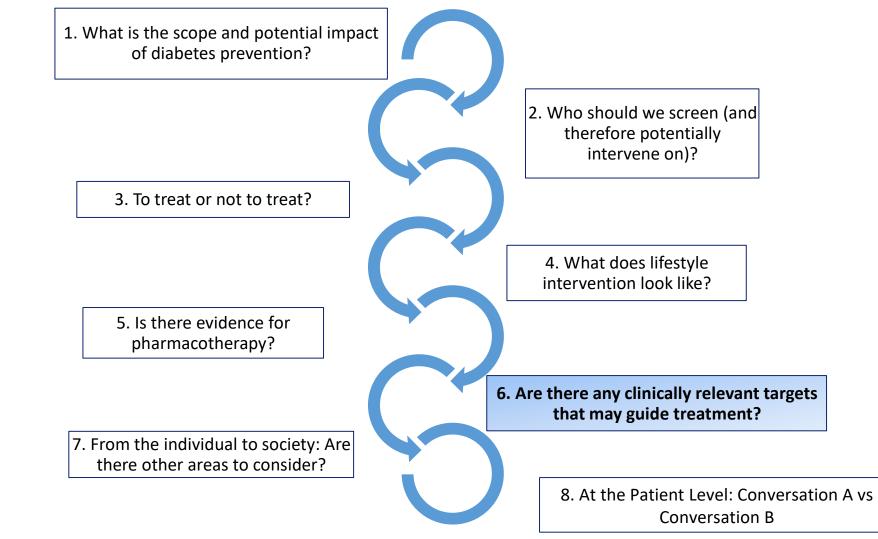
- Metformin has long been recognized to be associated with vitamin B12 deficiency
- Clinician awareness of this is variable; routine B12 testing is not common in clinical practice
 - Hematologic monitoring (CBC) used as surrogate
- Until recently, no guidelines recommend routine B12 testing


Long-term Metformin Use and Vitamin B12 Deficiency in the DPP/DPPOS

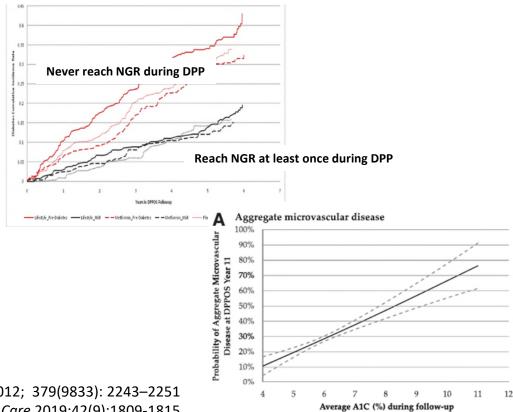
Aroda VR, Crandall J, et al J Clin Endo Metab 2016; 101: 1754-61.

AMERICAN DIABETES ASSOCIATION STANDARDS OF MEDICAL CARE IN DIABETES-2017

3.6 Long-term use of metformin may be associated with biochemical vitamin B12 deficiency, and periodic measurement of vitamin B12 levels should be considered in metformin-treated patients, especially in those with anemia or peripheral neuropathy. B



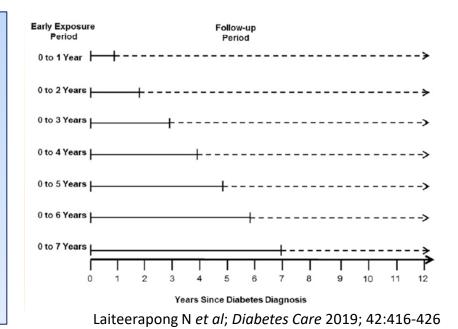
Personal Take-Home #5 (Pharmacotherapy?)


No agent has a label indication specifically for diabetes prevention. The longest term evidence is for metformin, with particular benefit seen in the DPP population in: -younger age groups -higher BMI (BMI \geq 35 kg/m²) -higher fasting glucose -higher HbA1c -history of gestational diabetes

Regression from Prediabetes to Normal Glucose Regulation at least once (vs never) during the **DPP**:

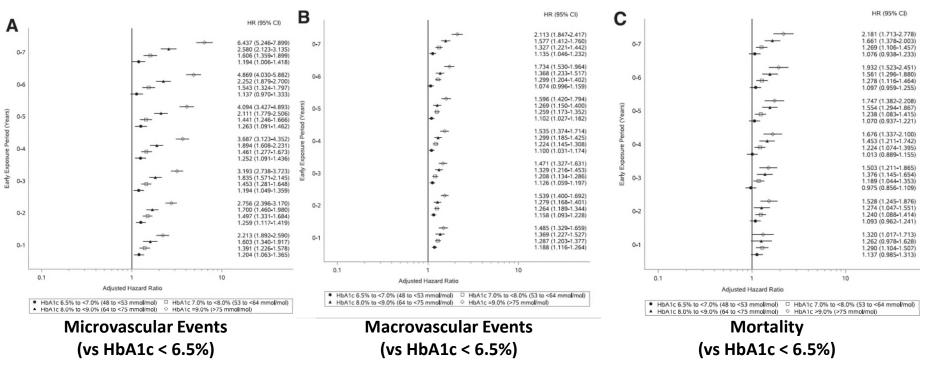
- 56% lower risk of diabetes during DPPOS follow up (compared to remaining with prediabetes)
- Lower aggregate microvascular disease, and nephropathy and retinopathy individually
 - This association was lost in models that included average HbA1c during follow up or diabetes status at end of follow-up
 - Thus, this lower risk was likely due to lower glycemic exposure over time

Perreault L *et al; Lancet* 2012; 379(9833): 2243–2251 Perreault L *et al; Diabetes Care* 2019;42(9):1809-1815



The Legacy Effect in Type 2 Diabetes: Impact of Early Glycemic Control on Future Complications (The Diabetes & Aging Study)

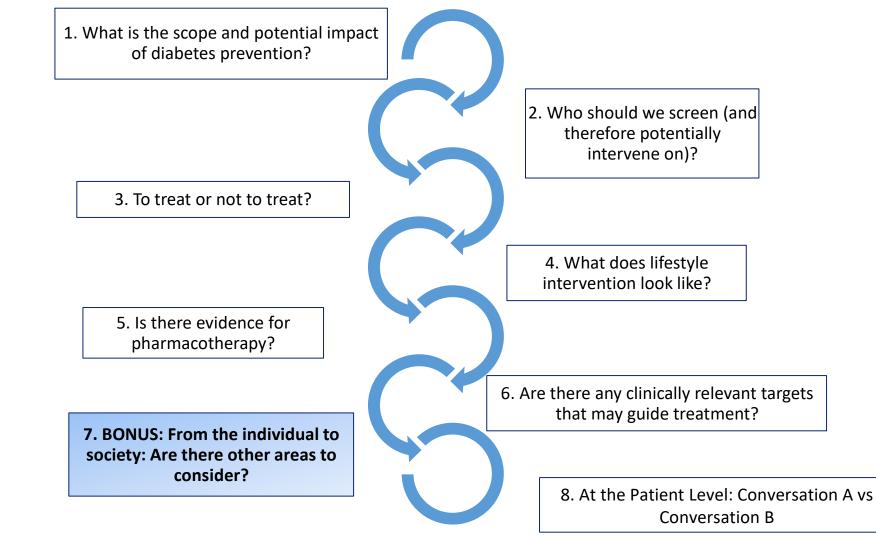
Compared with HbA1c <6.5% for the 0to-1-year early exposure period after diagnosis of T2DM, mean HbA1c levels \geq 6.5% were associated with:


- Increased risk of microvascular events
- Increased risk of macrovascular events
- Increased mortality

¹Department of Medicine, The University of Chicago, Chicago, IL ²Center for Health and the Social Sciences, The University of Chicago, Chicago, IL ³Division of Research, Kaiser Permanente, Oakland, CA

The Legacy Effect in Type 2 Diabetes: Impact of Early Glycemic Control on Future Complications (The Diabetes & Aging Study)

¹Department of Medicine, The University of Chicago, Chicago, IL ²Center for Health and the Social Sciences, The University of Chicago, Chicago, IL ³Division of Research, Kaiser Permanente, Oakland, CA


Laiteerapong N et al; Diabetes Care 2019; 42:416-426

Personal Take-Home #6 (on clinically relevant targets)

The ability to minimize exposure to hyperglycemia (even in the prediabetes range) has the potential to minimize long-term complications. Consider clinical markers as indicators of this progression and long-term risk.

MEDICAL MODEL

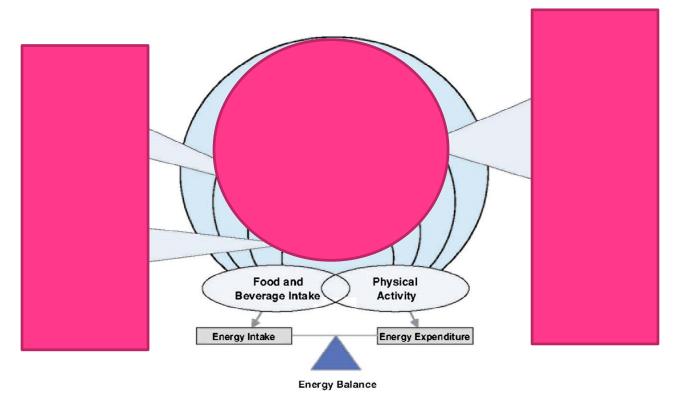


Figure 1—Levels and sectors of influence on obesity and diabetes risk (progress in preventing childhood obesity) (© 2007 the National Academies Press). SES, socioeconomic status.

Institute of Medicine. Accelerating Progress in Obesity Prevention. 2012

SOCIOECOLOGICAL MODEL

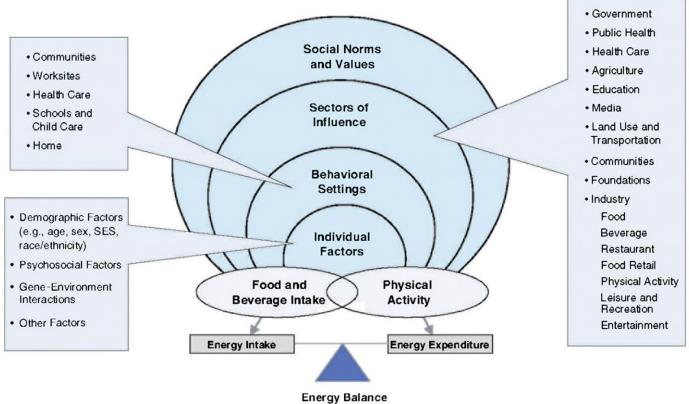
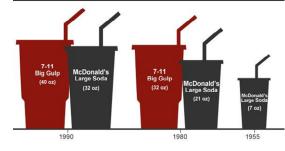
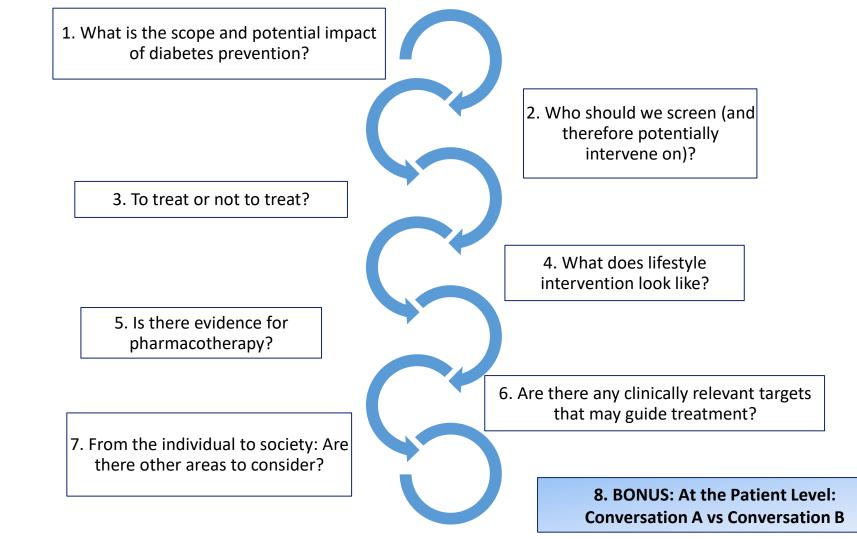



Figure 1—Levels and sectors of influence on obesity and diabetes risk (progress in preventing childhood obesity) (© 2007 the National Academies Press). SES, socioeconomic status.

SODA FOUNTAIN DRINK SIZE CHANGES

"Venus of Cupertino" (Scott Eaton)



Hill JO, Aroda VR, Diabetes Care 2013; 36:2430-2439

Conversation A vs Conversation B

Conversation A

- call prediabete your physical physical activ you in 6 months a on a medicine."
- "Yes, your labs show People in the DP don't make medicine..."

"Your lab tests success you have increased risk of the betes (a condition we st you make healthie **coal of 150**

pices and increase of moderate eight. I will see e will need to put you

ised you to lose weight. vent diabetes. If you e to put you on a

res, diabetes is preven. "Oh, you didn't ur doctor should have told you that. Your doctor should have advise, you to lose weight or take metformin and you could have prevented your diagnosis of diabetes."

Conversation B

Your lab values suggest that you are at an increased risk of developing diabetes. We term this condition 'prediabetes', and it signals to us that we should monitor you more closely and pay more attention to your long-term risks of diabetes and cardiovascular disease. Our primary goal to optimize health is to try to keep your blood sugar values (e.g. HbA1c) as close to normal as possible, safely, as we know that higher levels are associated with higher risk of progression to diabetes and complications related to diabetes.

Studies have shown that losing ~7% of one's body weight through healthy lifestyle changes can decrease the risk or delay progression to diabetes, and we have a local diabetes prevention program that can provide the coaching and educational tools to support this effort. We also have medications that have been studied in large programs that we can consider. We will monitor your glucose values (e.g. HbA1c) and consider additional therapy as needed with the goal of minimizing long-term risks of higher than normal blood sugars.

Conversation C?

Special thanks: DPP DPPOS SCPMG Patricia (and KP colleagues!)

thrive...

Vanita

Thanks for forwarding your slide set—thorough, informative and exciting. Enjoy Southern California. As one of our true health care systems, K-P is capable of implementing prevention effectively and efficiently.

