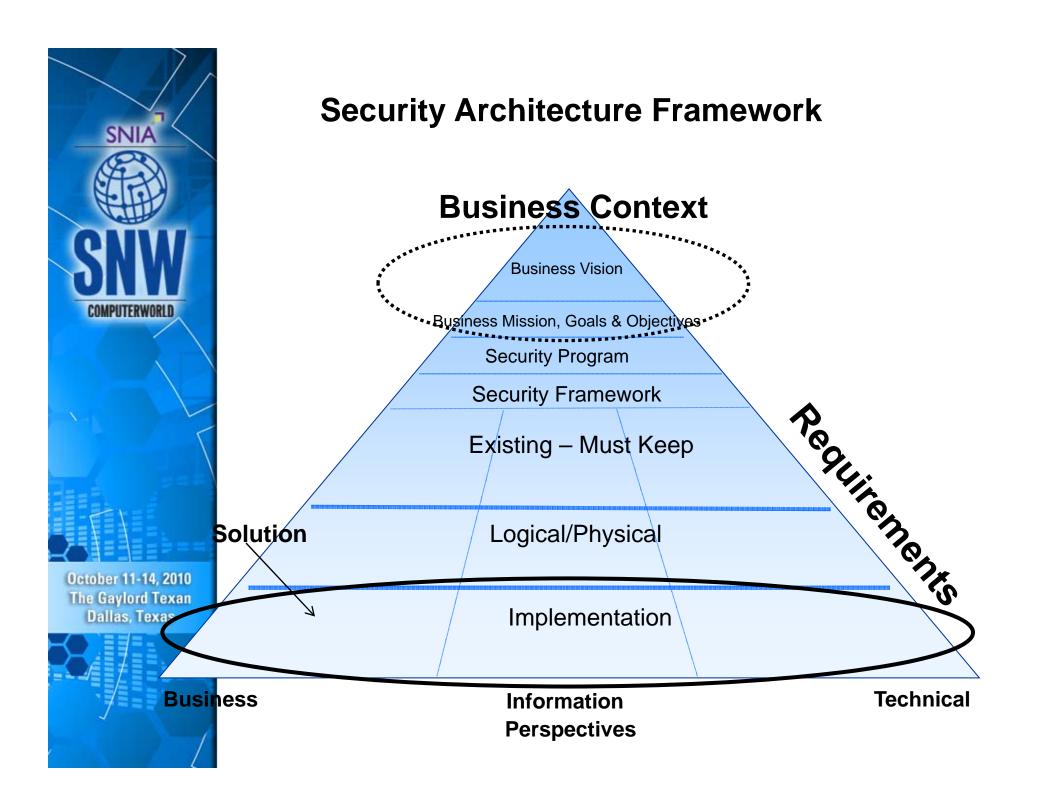


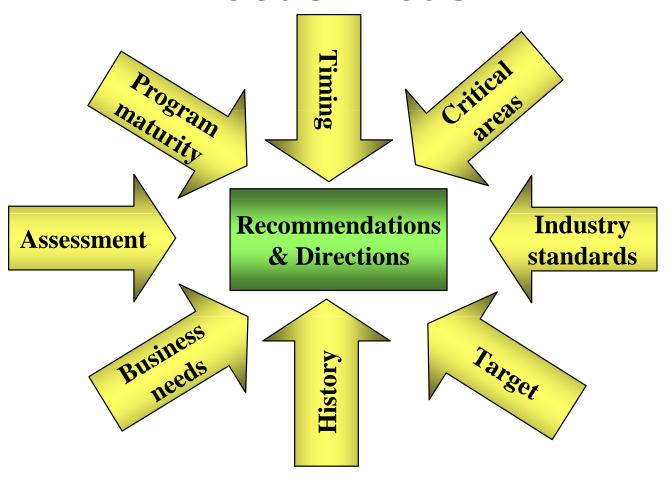
DATA SECURITY: Securing Data Securely

Dr. Denise C. Walker
Chief Emergency Management Officer
(formerly Chief Security Officer)
Lone Star College System

Challenges


- Customers/business partners expect you to operate at all times
- Disaster, human error, or malicious acts cannot be totally prevented
- Threats to confidentiality, integrity, and availability of data
- Information security should be based on analysis of your business functions and acceptable risks

How much can you afford to lose or accessed inappropriately?


Other Challenges

- Budget constraints
- Laws, rules, regulations, standards
 - FERPA, GLBA, HIPAA, FACTA, PCI DSS, etc.
- Culture
- Technology
 - e-Discovery, security controls, cloud computing, identity management, legacy applications, etc.

Focus Areas

...your response determines your directions

The Process

- Involve stakeholders early
- Determine what can be managed internally or outsourced
- Identify project sponsor and an owner high up in the organization
- Conduct risk analysis
- Prioritize key deliverables and milestones
- Obtain funding
- Develop project plan
- Kickoff Program

Solution should fit the business rather than the business fitting into the solution!

Risk Assessment

Negative effects on credibility

Health, welfare, & detriment to stakeholders

Violation of information privacy or confidentiality rights

Accessibility and integrity of data

Laws, regulations or contracts violations

Operational impact

Financial consequences

System controls perform as designed

Information Security Risk Analysis

Do you have ...

- Processes and infrastructure that meet your compliance demands including information confidentiality?
- Defined testing program for goodness and recovery with goals and measures in place (information integrity)?
- Change management and other policies tied directly to *information availability* plans?

Unauthorized Release of Data

Most common causes of unauthorized release of sensitive data appears to be lost backup tapes and unencrypted devices

- Fail to encrypt sensitive information contained on tapes that travel from data centers to off-site storage
- With access to the right hardware and software, retrieving sensitive information from tape is relatively easy.
 - Shared passwords
 - Administrators with keys to the kingdom
 - Disgruntled employees separated from company and access remains active
 - Passwords stored insecurely

Backup v. Archival Storage

Backup

 A copy of electronic information maintained for use if there is loss/damage to original (incl. DR purposes)

Archival Storage

- Primary copy of records (not for DR purposes)
- Permanent maintenance of electronic information valuable to organization
- Focus on data that will no longer change
- Must be maintained uncorrupted and usable for a period of time
- 1 Master + 1+ Duplicates

Pros & Cons of Media Types – Writable Media

Туре	Pros	Cons
Таре	InexpensiveCan be used repeatedlyGood for daily backups	Relatively slowSensitive to heat and magnetism
CD / DVD	CompactInexpensivePortable	 Sensitive to heat Unusable if mishandled Rapidly evolving technology makes today's storage media outdated
External Hard Drive	 Most incl. backup software Can be automated Can be used to replace faulty drives 	 Expensive Maintaining compatibility with your source systems Sensitive to heat and magnetism
Flash Drives	Easily portableFast data transfer	 Easy to lose Can be expensive Difficult to label Sensitive to heat and magnetism
Online Backup (remote server, upload via Internet)	Easy data transferCan be automated	 Expensive Provider system can be compromised Provider can go out of business Reliant on provider standards

Risk Analysis

Backups

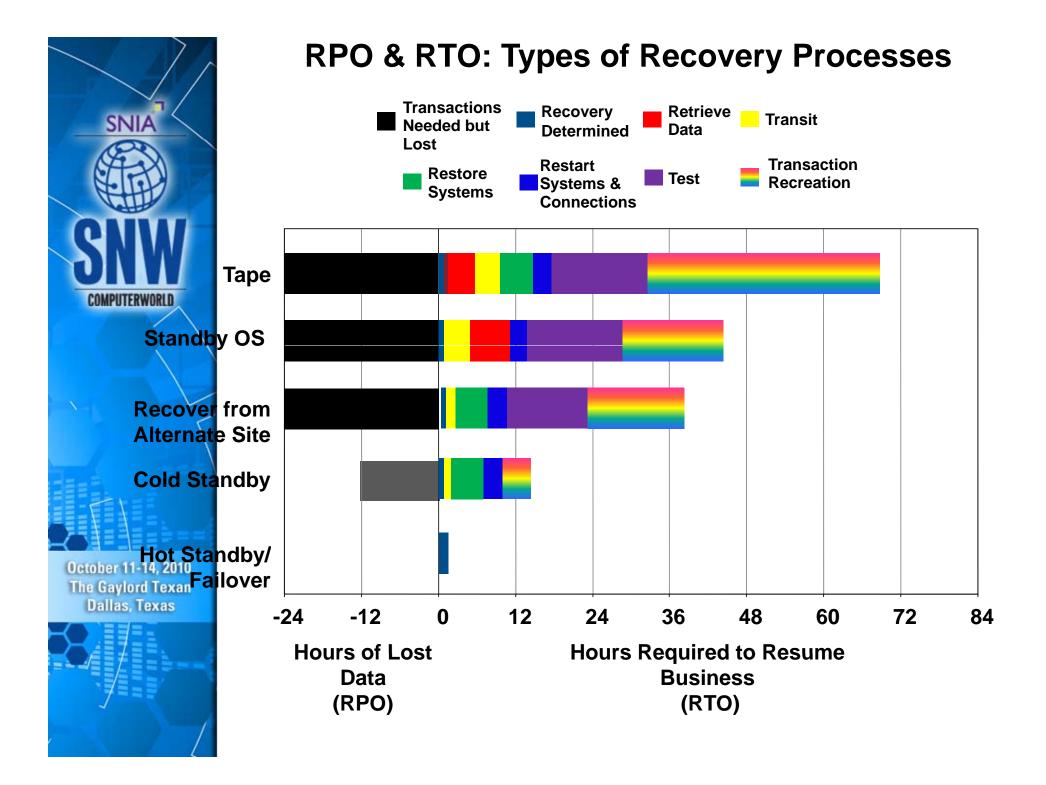
- Understand flow of information
- Cost of temporary/permanent data loss
- Is encryption needed
- Can compression be used to save space
- How many versions of backups are needed to ensure retrieval of damaged/destroyed data
- Labeling and naming convention of backed-up files
- Frequency and types of backups
- Full, incremental and differential backups
- What to backup
 - Software, application files and settings, sensitive data

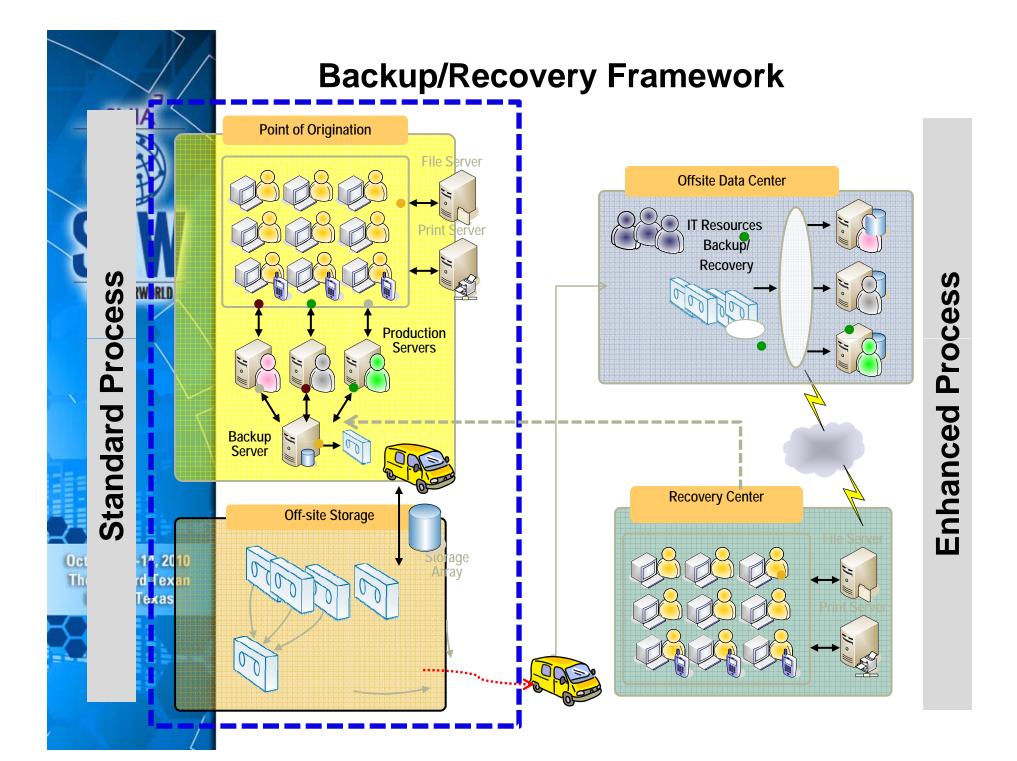
Risk Analysis

- Archival Storage
 - What to store
 - How many duplicates are needed
 - Where to safely store and for how long
 - Should not be compressed or encrypted
 - Address information security for data at rest
 - Media migration or refreshing at defined basis
 - Life expectancy of media
 - Retention of data
 - Climate conditions and reuse
 - Common file formats to use (i.e., TIFFs)

Data Storage, Backup & Recovery Risk Analysis

Do you have an understanding of ...


- Your business priorities and IT risks?
- What compliance means for your business?
- How long you can go if the primary source is no longer available, data is lost, corrupted, or compromised?
- Applications and hardware priorities required to support essential business functions?



Backup & Recovery Readiness Risk Analysis

Do you have ...

- Detailed procedures to respond to an attack that penetrates your network or device?
- Backup strategy that supports both operational issues and disaster recovery?
- Documented responses to a disruption of a critical business unit?
- Alternate facility from which to recover and conduct business and/or IT operations?

Guidelines for Secure Backup

- Back up data at regular intervals
 - Employees make important files available for inclusion
 - Individual backup procedures also needed
- Verify data has been backed up
- Store backup media in a secure, safe place
- Verify the ability to restore
- Test, test, test

Encryption

What

 a process of transforming information to an unreadable format using an algorithm (called cipher) to anyone except those possessing special knowledge, usually referred to as a key.

When

Sensitive data in transit and at rest

Who

 Anyone with a device that is used to access sensitive data

Why

to minimize opportunity for unauthorized access to electronic sensitive data

Encryption concerns

- View by end users: a move towards "over-kill" and not welcomed by stakeholders
- Expensive and intrusive: Encrypting all production data without looking at the value or hot it fits into the overall data protection strategy
- Causes degradation in performance
- Data loss if encryption keys are lost or disgruntled former employees refuse to provide passwords
- Another password prompt for information access
- Management of encryption systems certificates, keys, passwords, additional storage requirements
- IS personnel must work closely
- Finding the right balance among locking data down, discomfort, and acceptable risk.

Other processes to secure data from the threat within

- Forensics analysis
- Digital rights management
- Security policy management
- Protect intellectual property
- Enforcement policies

The dreaded hacker:

(16%) isn't much of a menace

v. insiders (69% = 39% human error + 30% malicious)

(Ponemon Institute's 2004 Data Security Tracking Study)

Conclusions

- Effective governance with clear accountabilities for ownership & use
- Aligning backup policy and controls with business needs – new risks will surface
- Previously mitigated risks may become a concern again
- Create/maintain awareness throughout the organization
- Measure/report on the value of securing data securely

Conclusions

- Develop/use an architecture that includes existing and emerging technology and business scenarios
- Regularly review schedules, scopes, information classifications, etc.

Technology is important however the most advanced technology is useless if not tested and incorporates the needs of the business.

Contact Information:
Dr. Denise C. Walker
Lone Star College System
Denise.c.walker@lonestar.edu

THANK YOU!

