

Selecting the proper polyamide for multilayer food packaging films: intrinsic factors leading to performance considerations

Joe Costa
Technical & Application Development
BASF Corporation

Polyamides are so useful for numerous reasons

- High Mechanical Strength
 - Fishing line, Rope, Bristles
- Easily co-extruded
 - Multilayer structures with dissimilar polymers possible
- Heat & Chemical Resistance
 - Roasting bags, Intake manifolds
- Thermoformable
 - High residual corner thickness
- Barrier
 - Barrier mulch film
- Abrasion Resistance
 - Weed trimmer, wire jacketing

Intrinsic factors can dramatically alter the final properties of the film

Intrinsic

Mechanical Properties

Structural

Key polyamide intrinsic factors

Structural

What about crystallinity?

Figure 1 These crystallites have order in which the zigzag polymer chains are held together in a regular pattern by intermolecular forces.

Flexible packaging's polyamide crystallinity spectrum

(Polyamide 66)

(Polyamide 6)

(Polyamide 6/66)

C37LC

- Decreasing crystallinity / higher transparency / less haze
- Increased softness / higher flexibility / better thermoforming
- Higher blow up ratio
- Lower melting point / lower processing temperature / higher frost line
- Fewer wrinkles during blown film collapse process
- Increased shrinkage from orientation process
- Increasing puncture resistance @ constant force
- Higher tear strength / Lower tensile strength

Intrinsic crystallinity comparison

(Polyamide 6/66)

Tm: 180 to 200C

Tc: 110 to 145C

Delta H: 34 to 40 J/g

(Polyamide 6)

Tm: 220C

Tc: 170C

Delta H: 50 J/g

(Polyamide 66)

Tm: 260C

Tc: 218C

Delta H: 70 J/g

Intrinsic crystallinity comparison

Key polyamide process factors

Intrinsic

Structural

PA crystallinity differences show in various ways including film haziness

PA 6/66 (haze 3.0)

Very low crystallinity PA6/66 (Ultramid® C37LC) (haze 0.45)

Blown Film 150µm / BUR 1:2 / ASTM D-1003

Yield Strength (MPa)

Homopolyamides display a higher degree of crystallinity rendering it a stiffer material

A high degrees of crystallinity also correspond to better barrier properties

Elmendorf Tear Ultramid® Nylon

■ Elmendorf MD gf ■ Elmendorf CD gf

Percent Elongation at Break

Higher orientation is possible with low crystallinity copolyamides

Tape stretch ratio at max. machine force

Key polyamide structural factors

Intrinsic

Mechanical Properties

Most food packaging applications are multilayer structures

Blown film curl as a function of asymmetry

3 PE frostline 120-80° C PE solidifies+shrinks PA rigid → can not shrink/PE
→ curl to PE side

2 PA frostline 180-140° C PA solidifies+shrinks PE soft → shrinks

1 Directly after die >220° C all components molten

Lower melting point and crystallinity improves processing

- Higher bubble stability
- Higher frost line towards PE/PP
- Reduced curl

Very low crystallinity
PA6/66
(Ultramid C37LC)

Flexible packaging's polyamide crystallinity spectrum

(Polyamide 66)

(Polyamide 6)

(Polyamide 6/66)

C37LC

- Higher transparency / less haze
- Increased softness / higher flexibility / better thermoforming
- Higher tear strength
- Lower tensile strength
- Lower melting point / lower processing temperature / higher frost line
- Fewer wrinkles during blown film collapse process
- Increased shrinkage from orientation process
- Increasing puncture resistance

150 years

For more information contact:

Joe Costa

Technical & Application Development

North America

BASF Polyamides and Intermediates

267/314-0627

joao.costa@basf.com

