Wilmert De Bosscher Chief Technology Officer +32 9381 6177 wilmert.debosscher@soleras.com

Impact of Chamber Pressure on Sputtered Particle Energy

Tampa, October 18th, 2017

Background

Why Sputtering at Various Pressure Points?

- Generate dense/porous films: controlled diffusion rate
- Relax stresses in harder or thicker layers
- Control energy and flux of charged particles
 - Typically desired for harder coatings
 - Typically avoided for TCO layers
 - Typically limited for temperature sensitive substrates

Outline

- Test Set-up
- I-V Behavior from Experiments
- Monte Carlo Simulations and Analytical Approximation of Energy Distribution on Target and Substrate
- Fitting the Results with Optical Data
- Layer Growth Simulations and Confirm Optical Data
- Conclusions

Testing Set-up

- Planar or Rotating Cylindrical Magnetron
- Stationary or Moving Substrate
- Various Magnetic Systems
 - Standard Field
 - High Field
 - Online Adjustable Field
- Typically Metallic Process (in Ar gas only)
 - Metal targets: AI, Zn, Sn
 - Ceramic targets: ZrO_x, ZTO

Results

Dynamic Deposition Rate

- Deposition of AI in Ar on moving substrate from 0.05 to 10 Pa
- Almost constant deposition rate from 0.2 Pa to 1.6 Pa (for layers between 200 and 600 nm thick @ various power levels and transport speed)?
- Some observe a peak deposition rate at a given pressure point⁽¹⁾
- Some describe a steady decline of deposition rate with⁽²⁾
 - Higher pressure *p*
 - Larger throw distance d
 - Lower particle energy E_s
- L. Bing-Chi et al. Lower particle mass m_s
- (2) T. Drüsedau

Proprietary to Soleras Advanced Coatings

5

Results

I-V Characteristics

- Slight voltage increase at higher power density (constant pressure p)
- Important voltage decrease at higher pressure (constant power density P)
- Stable and same sputter regime from about 0.2 to below 3.2 Pa
- Does higher current provide higher sputter rate?
 - Higher current: more Ar⁺ ion bombardment
 - Lower voltage: reduced sputter yield
 - Answer: No; mainly driven by power density

Current – Voltage relationship: $I = k \cdot V^n$

n magnetic bottling efficiency (typically between 6 and 12)

Simulations

Ion Stopping and Interaction in Solid Matter

- U_s surface binding energy of target atoms
- E energy of sputtered particle
- U_t sputter target voltage
- γ energy transfer mass factor; = $\frac{4 m}{(m_a)^2}$

$$\frac{4 m_g m_s}{(m_g + m_s)^2}$$

Simulations

Material Flux and Gas Interactions

- 3D Geometrical description of a large area glass coater rotatable sputter configuration
- Finite element Monte Carlo simulation for calculating the sputtered particles trajectories⁽¹⁾:
 - Pressure: 0.05 to 12.8 Pa
 - Throw distance: 50 to 150 mm
 - Particle energy: 2 to 800 eV

K. Van Aeken et al.

Simulations

Results from Monte Carlo Simulations

Analytical Approximation Introduction of the Scattering Factor ς

- Incorporating the effect of
 - Processing conditions: d, p, T
 - Material and energy considerations: m, E

 E_{as} average energy of sputtered atom

Analytical approximation of average energy E (d, p, T, m, E_{is}): $E = E_{is} \cdot e^{-\varsigma}$ E_{is} initial energy of sputtered particle

- Where to find the p x d relationship?

•
$$\zeta = \frac{d \cdot p}{k \cdot T} \cdot \pi \cdot (r_g + r_s)^2 \cdot \frac{m_g + m_s}{m_s} \cdot \sqrt{\frac{(1 + E_{ag})}{E_{as}}}$$

Bringing MC Results and Analytical Approach Together

Optical Data

Measurements and Fitting

- Optical measurements are performed from 300 to 1200 nm
- Samples at 0.1 Pa are taken as a reference with nominal thickness and 100% density
- Fitting is performed based on
 - Optical thin film modelling
 - Al Palik library
 - Bruggeman effective medium approximation
- Extremely good fitting is obtained by adjusting layer thickness and density

Back to Simulations Layer Growth Modelling⁽¹⁾: Based on Energy and Angular Distributions at the

Substrate from Trajectory Simulations

Particle Final Destination Effect on Target Erosion

- Most particles do not reach the substrate at higher pressure, but return to the target
- Particles leave the target from the racetrack zone, but return evenly over the target surface:
 - More pronounced erosion groove formation
 - Reduced target utilization
- Standard magnetics perform poor on target ^{§ 136} utilization and will show pronounced erosion ¹³⁵ groove formation
- Optimized magnetics are required for sustaining long target life at higher pressure regimes

Conclusions

- Defined current voltage behavior as a function of pressure
- Introduced scattering factor and analytical approximation for energy variation from Monte Carlo simulations
- Used transmittance measurements for calculating layer thickness and density and bringing measurement results on energy distribution and simulations into agreement
- Performed layer growth simulation, confirming layer thickness and density with optical performance, based on particle energy distribution
- Investigated effect on target erosion and proposing optimized magnetic configuration

Thank you for your attention! Open for any Questions ...

