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Background

- Generate dense/porous films: controlled diffusion rate

- Relax stresses in harder or thicker layers

- Control energy and flux of charged particles
• Typically desired for harder coatings
• Typically avoided for TCO layers
• Typically limited for temperature sensitive substrates

Why Sputtering at Various Pressure Points?
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Outline

- Test Set-up

- I-V Behavior from Experiments

- Monte Carlo Simulations and 
Analytical Approximation of Energy 
Distribution on Target and Substrate

- Fitting the Results with Optical Data

- Layer Growth Simulations and Confirm 
Optical Data

- Conclusions

Experimental MC Simulation Analytical
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Testing Set-up

- Planar or Rotating Cylindrical Magnetron

- Stationary or Moving Substrate

- Various Magnetic Systems
• Standard Field
• High Field
• Online Adjustable Field

- Typically Metallic Process (in Ar gas only)
• Metal targets: Al, Zn, Sn
• Ceramic targets: ZrOx, ZTO
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Results
Dynamic Deposition Rate

- Deposition of Al in Ar on moving 
substrate from 0.05 to 10 Pa

- Almost constant deposition rate from 
0.2 Pa to 1.6 Pa (for layers between 
200 and 600 nm thick @ various 
power levels and transport speed)?

- Some observe a peak deposition rate 
at a given pressure point(1)

- Some describe a steady decline of 
deposition rate with(2)

• Higher pressure p
• Larger throw distance d
• Lower particle energy Es
• Lower particle mass ms
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(1) L. Bing-Chi et al.
(2) T. Drüsedau



Results
I-V Characteristics

- Slight voltage increase at higher 
power density (constant pressure p)

- Important voltage decrease at higher 
pressure (constant power density P)

- Stable and same sputter regime 
from about 0.2 to below 3.2 Pa

- Does higher current provide higher 
sputter rate?
• Higher current: more Ar+ ion 

bombardment
• Lower voltage: reduced sputter yield
• Answer: No; mainly driven by power 

density
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Current – Voltage relationship:
I = 𝑘𝑘 .𝑉𝑉𝑛𝑛

• 𝑛𝑛 magnetic bottling efficiency
(typically between 6 and 12)



Simulations

- Thompson sputtering yield energy 
distribution:

𝑌𝑌 𝐸𝐸 𝑑𝑑𝐸𝐸 ≅ 𝐸𝐸
(𝐸𝐸+ 𝑈𝑈𝑠𝑠)3

𝑑𝑑𝐸𝐸

- Adjusted Thompson formula:

≅
𝐸𝐸

𝐸𝐸 + 𝑈𝑈𝑠𝑠 3.3 1 −
𝐸𝐸 + 𝑈𝑈𝑠𝑠
𝛾𝛾.𝑈𝑈𝑡𝑡

𝑑𝑑𝐸𝐸

• 𝑈𝑈𝑠𝑠 surface binding energy of target atoms
• 𝐸𝐸 energy of sputtered particle
• 𝑈𝑈𝑡𝑡 sputter target voltage
• 𝛾𝛾 energy transfer mass factor; = 4𝑚𝑚𝑔𝑔 𝑚𝑚𝑠𝑠

(𝑚𝑚𝑔𝑔+𝑚𝑚𝑠𝑠)2

Ion Stopping and Interaction in Solid Matter
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Simulations
Material Flux and Gas Interactions
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Proprietary to Soleras Advanced Coatings(1) K. Van Aeken et al.

- 3D Geometrical description of 
a large area glass coater 
rotatable sputter configuration

- Finite element Monte Carlo 
simulation for calculating the 
sputtered particles 
trajectories(1):
• Pressure: 0.05 to 12.8 Pa
• Throw distance: 50 to 150 mm
• Particle energy: 2 to 800 eV



Simulations
Results from Monte Carlo Simulations
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Analytical Approximation
Introduction of the Scattering Factor 𝜍𝜍
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- Incorporating the effect of
• Processing conditions: d, p, T
• Material and energy considerations: m, E

• 𝜍𝜍 = 𝑑𝑑
𝜆𝜆𝑚𝑚

.𝑚𝑚𝑔𝑔+𝑚𝑚𝑠𝑠

𝑚𝑚𝑠𝑠
. (1+ 𝐸𝐸𝑎𝑎𝑔𝑔)

𝐸𝐸𝑎𝑎𝑠𝑠
• 𝑑𝑑 throw distance (T-S spacing)
• 𝜆𝜆𝑚𝑚 mean free path = 1

𝑛𝑛𝑔𝑔.𝜋𝜋.(𝑟𝑟𝑔𝑔+𝑟𝑟𝑠𝑠)2

• 𝑛𝑛𝑔𝑔 gas density = 𝑝𝑝
𝑘𝑘.𝑇𝑇

• 𝑚𝑚 mass of gas / sputtered atom
• 𝐸𝐸𝑎𝑎𝑔𝑔 energy of activated gas
• 𝐸𝐸𝑎𝑎𝑠𝑠 average energy of sputtered atom

- Where to find the p x d relationship?

• 𝜍𝜍 = 𝑑𝑑 .𝑝𝑝
𝑘𝑘.𝑇𝑇

.𝜋𝜋. (𝑟𝑟𝑔𝑔 + 𝑟𝑟𝑠𝑠)2.𝑚𝑚𝑔𝑔+𝑚𝑚𝑠𝑠

𝑚𝑚𝑠𝑠
. (1+ 𝐸𝐸𝑎𝑎𝑔𝑔)

𝐸𝐸𝑎𝑎𝑠𝑠

Analytical approximation of average 
energy E (d, p, T, m, Eis):

E = 𝐸𝐸𝑖𝑖𝑠𝑠 . 𝑒𝑒−𝜍𝜍
𝐸𝐸𝑖𝑖𝑠𝑠 initial energy of sputtered particle



Bringing MC Results and Analytical Approach Together
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Monte Carlo
simulation

Analytical
approximation



Optical Data
Measurements and Fitting
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- Optical measurements are 
performed from 300 to 1200 nm

- Samples at 0.1 Pa are taken as a 
reference with nominal thickness 
and 100% density

- Fitting is performed based on
• Optical thin film modelling
• Al Palik library
• Bruggeman effective medium 

approximation

- Extremely good fitting is obtained by 
adjusting layer thickness and density



Back to Simulations
Layer Growth Modelling(1): Based on Energy and Angular Distributions at the
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Substrate from Trajectory Simulations

Pressure: 0.4 Pa
Thickness: 74 ML
Density: 99%
Roughness: 1 ML

Pressure: 1.6 Pa
Thickness: 76 ML
Density: 84%
Roughness: 3 ML

Pressure: 3.2 Pa
Thickness: 65 ML
Density: 76%
Roughness: 4 ML

Pressure: 6.4 Pa
Thickness: 49 ML
Density: 61%
Roughness: 5 ML

(1) NASCAM S. Lucas et al.



Particle Final Destination
Effect on Target Erosion
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- Most particles do not reach the substrate at 
higher pressure, but return to the target

- Particles leave the target from the racetrack 
zone, but return evenly over the target 
surface:
• More pronounced erosion groove 

formation
• Reduced target utilization

- Standard magnetics perform poor on target 
utilization and will show pronounced erosion 
groove formation

- Optimized magnetics are required for 
sustaining long target life at higher pressure 
regimes



Conclusions

- Defined current – voltage behavior as a function of pressure

- Introduced scattering factor and analytical approximation for energy 
variation from Monte Carlo simulations

- Used transmittance measurements for calculating layer thickness and 
density and bringing measurement results on energy distribution and 
simulations into agreement

- Performed layer growth simulation, confirming layer thickness and 
density with optical performance, based on particle energy distribution

- Investigated effect on target erosion and proposing optimized 
magnetic configuration
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Thank you for your attention!
Open for any Questions …
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