
Quantitative Evaluation of Non-Uniform Coating 
 
Abstract 
Evaluation of subtle irregularities in coatings has historically been a job for the human eye. 
Unfortunately, this can be very subjective. To become more quantitative, Carestream sought to 
utilize hardware and software to augment manual inspection. 
 
Using an off-the-shelf film scanner, a high-resolution digital copy of each sheet was created. 
This digital copy was processed using ImageJ software and run through an algorithm in Excel to 
return a flow mottle grade.  The entire process takes less than two minutes. This improvement 
to the detection of subtle defects has created the opportunity for engineers to make very 
subtle changes to the process and quantify visually indistinguishable differences in the product. 
 
Article 
Evaluation of subtle irregularities in roll-to-roll coatings has historically been a job for the 
human eye, which has an exceptional ability to distinguish abnormalities in solid colors.   
Unfortunately, with modern manufacturing being a 24/7 operation, the repeatability and 
reproducibility of grading is heavily impacted by different operators on different shifts and 
fatigue caused by long hours. To help eliminate this variability, we looked to technology to 
conduct a study that augmented a manual inspection system with a digital system. The study 
tracked the impact of subtle process variations on the product to determine if pursuing larger 
changes in that direction could potentially be beneficial.  
    
The primary defect used for this study was flow mottle on x-ray film.  Flow mottle is a visual 
defect caused by slight differences in surface tension or airflow of a coating during drying which 
causes a “blotchy or streaky” appearance. Currently to evaluate the quality, film samples are 
printed with various levels of mottle which are then used to subjectively grade production 
material.  These printed film samples are called Visual Comparison Standards (VCS).  

Figure 1 Contrast Enhanced Image of X-ray Flow Mottle with 
Region of Interest denoted 



 
Figure 2 Level 6 Flow Mottle VCS (reject)                                    Figure 3 Level 7F low Mottle VCS (minimum accept) 

To gain an understanding of how well the inspectors were performing, 44 samples ranging from 
very good to very bad mottle were evaluated by 6 different certified technicians. The average 
standard deviation was 0.30 flow mottle units (FMU) for these samples, which was OK, but the 
average spread from worst to best grading per sample was 0.73 FMU. For this product, a rating 
of six was terrible and eight was perfect, so the average spread from worst to best grading 
presented a large area for improvement. 
 
The first challenge was creating a digital copy of the physical films.  Initial attempts to scan 
these films were done with materials on hand.  A lightbox was placed on top of a flatbed 
scanner that the light source was removed from.  This transformed the captured image from 
reflected to transmitted light.  Unfortunately, there were problems with light bleeding in from 
the edges and the resolution was not sufficient. Eventually, a readily available film scanner was 
purchased from eBay®.  The film scanner was capable of producing high-resolution (570 DPI) 
digital copies of up to 25 sheets at a time.  
 

 



 

Figure 4 Plot of optical density values overlaid on the image of Mottle 

Carestream worked to develop a model to quantify mottle.  First, the image was captured and 
pixel intensity averaged in the downweb direction over a two-inch region across the width of 
the film. This gives us numerical values for the optical density of the film in each location.  If the 

region selected is too wide, it averages out the intensity 
variations. In contrast, if the region selected is too short 
of a distance, it results in excessive noise. This process 
provided a series of crossweb optical density values for 
the sheet in question.  
 
From this series of data, a long distance moving average 
was subtracted to remove baseline drift in intensity over 
the sheet. This was done because there were very subtle 
differences in the optical density of the film over large 
distances (2%).  While these variations could pose a 

problem to the visual inspection of the film, it is not a 
feature of the defects that were being examined. As a 
result, subtracting a long-term moving average that 
follows the baseline density of the sheet leaves behind a 
flat dataset with localized variations caused primarily by 
mottle.  

Figure 6 Image density across the sample with 
overlaid moving average 

Figure 5 Density values after the moving average 
was subtracted 



Initial thoughts on how to solve the problem of quantifying mottle proved to be overly 
simplistic. It seemed like since the defect was characterized by random variations in 
transparency that a simple standard deviation would correlate to that variability; however, the 
individual outlier points caused a large portion of the standard deviation and not the mottle 
itself.  
 
The next theory was that the eye was picking out the rapid change in optical density over a 
short distance, which would be seen as a steep slope for the quantitative data. Although this 
model showed promise, it did not perform as well as our next attempt. 
 

Finally, working on the same concept of 
the eye seeing areas with high contrast 
ratios, a height threshold model was 
created. Every time the localized optical 
density of the film changed by a certain 
amplitude over a fixed width, a tally is 
taken. For our test, the optimal criteria 
were a change in intensity of 60 density 
units in a 1/5” span. The number of these 
intensity variations per sheet was counted 

and run through a linear fit to positively correlate to the human-graded mottle. Using this 
model, we attained r² values of 0.91 and a correct disposition of 98% of samples.  The one 
failed sample grading 7.06 by the algorithm and 6.98 by the inspectors versus a minimum 
acceptable grade of 7. Additionally, the model was on average only 0.13 FMU’s different than 
the inspector average.  

 
Figure 8 X-Y Plot of Human grading vs Machine Grading 

y = 1.012x - 0.0781
R² = 0.9114
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Figure 7 Step height model for evaluating flow mottle 



Following this success, an attempt was made to examine using FFT (Fast Fourier Transform) 
analysis.  We achieved some initial progress performing this in Matlab; however, the possibility 
of a vast improvement was unlikely and the complexity of the system was much greater, 
leading us to eventually abandon further research into the modeling. 
 
The end result was a process using image analysis software (ImageJ) to quantify the image and 
run the output data through an algorithm in Excel to return a graded value for mottle. This 
entire process takes less than two minutes.  To finalize the interface, a macro was written for 
ImageJ and Excel, which took all of the images in a given folder, processed them one at a time 
and saved them in a new folder. The process quantified dozens of samples with the pressing of 
just two buttons – allowing the engineer to walk away to be productive else ware. 
 
While the general concept for this project is somewhat straightforward, the implementations 
proved to be fairly challenging. Each sample was scanned and processed to create 7,500 data 
points which was later reduced to 4200.  To optimize the process for those sheets, each dataset 
needed to be averaged across a certain number of data points (Variable 1), and then multiple 
amplitude thresholds (Variable 2) were tested across a varying distances (Variable 3). This turns 
out to be 8,600 calculations per sample per condition. To validate this method, 42 samples 
were scanned twice each. This is 84 datasets to perform 8,600 calculations on each. We also 
needed to optimize the variables to maximize the R² values between the algorithm and the 
human grading.   
 
These calculations were all being performed in Excel utilizing its built-in features. While these 
were useful, they all had their shortcomings.  Goal seek only optimizes one variable at a time, 
which created an endless loop of optimizing for sequential variables only to get caught in a local 
maxima. Solver, on the other hand, works for multiple variables, but does not support the 
complexity of the equations and arrays in our algorithm. We also attempted to use a third-party 
add on for Excel; however, it was unsuccessful at handling the large quantity of data. 
 
Alternatively, the brute force approach was taken.  A macro was created to test >74,000 
combinations of our three variables.  The macro would change the value of a single variable at a 
time, then reprocess 84 samples, evaluate the correlation to the manual inspected data and 
save the variables values and fit in a table before going to the next value. The standard desktop 
computer did not take kindly to this, so we moved the processing to an 8-core processor 
computer. The ~54 billion calculations took just about a week to finish.   
 
In the end, this method of augmenting the manual inspection system with a digital system 
proved to be more accurate, precise and robust than the system of multiple lab technicians, 
operators and engineers taking turns subjectively comparing the samples to visual guides at 
multiple levels. The effects of small process changes, within the operating window, were also 
discerned – allowing us to quickly explore many different paths without risk to our final 
product.  Some of the conditions we were able to explore were fan speeds, laydown, oven 
temperatures, and line speed. 
 



Summary 
In today’s corporate environment, there is always a push to keep costs down to maintain the 
bottom line. That is one of the main reasons this project was able to proceed. Identifying the 
contributing factors to mottle would allow the coater to run at an increased linespeed and 
reduce the cost per square meter.  The scanner was purchased for ~2% of the price of a new 
scanner, while ImageJ was free and Excel was already on the computers. The cost of this project 
was virtually free.    
 
While this is just the start of Carestream’s exploration into augmenting the manual inspection 
system with a digital system, the implications are promising. In addition to delivering improved 
consistency and avoiding human error caused by fatigue or multiple technicians, there is 
potential for this technique to also apply to quantifying many other defects such as white spots, 
black spots, streaks, scratches, cleanliness and more. 
 
Quantifying visual defects can have many challenges, but in the current environment of 
virtually free processing power, reliable free software, an abundance of used equipment for 
sale and a continual drive to improve processes, many obstacles can be overcome. This is just 
one example of one defect, but this technology will continue to be leveraged for additional 
testing in the future. 
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