

Polyketone Polymers – A Resin Portfolio with Unique Value Propositions for Flexible Packaging Applications

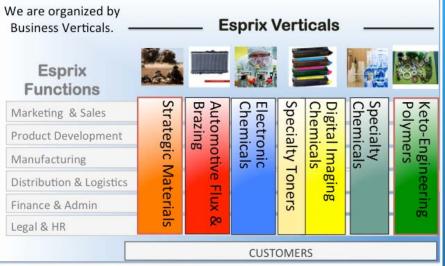
SPE FlexPackCon 2017

Tim Morefield Technical Consultant Esprix Technologies October 18,2017

Discussion Topics

▶ Background of Esprix Technologies
 ▶ Overview of Aliphatic Polyketone (PK)
 ▶ Ketoprix™ PK Properties

- Mechanical
- Thermal
- Permeability
- Chemical Resistance
- Sterilization Resistance
- Regulatory Considerations
- Example Applications


Summary and Conclusions

Who is Esprix Technologies?

Esprix is a private, specialty chemical & performance products company

OUR VISION: To be the global market leader in the sale, development and application of performance products, fine chemicals and technical services to improve people's quality of life by "touching lives everyday".

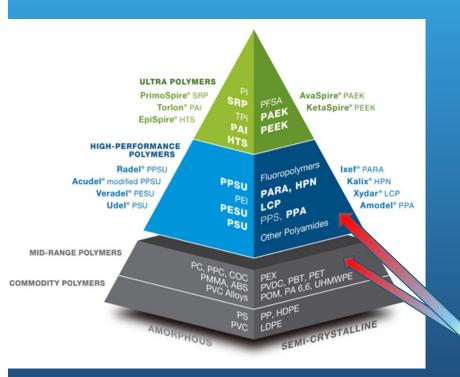
OUR MISSION: Esprix Technologies is dedicated to the creation of innovative products and services through partnership with our customers thereby enabling us to provide technical development, manufacturing and distribution of performance materials solutions.

Company Values:

Kstoprix

- Practice Safety in Everything We Do
- Act with Integrity
- Demonstrate Highest Ethical Behavior
- Have Respect for People
- Treat Customers as Kings
- Treat Esprix Assets as if they were Your Own

... founded 2000, Sarasota, FL



What is Aliphatic Polyketone?

Esprix has its own line of aliphatic Polyketone polymers and compounds called Ketoprix[™]

Aliphatic Polyketones (PK) are linear, perfectly alternating terpolymers of α -olefins, such as ethylene and propylene and CO.

 $\begin{array}{ccc} O & O \\ || & || \\ -(CH_2CH_2C)_x - (CH_2CHC)_y - \\ & \\ CH_3 \end{array}$

EPCO terpolymers are semi-crystalline engineering resins which play in the upper end of mid-range ETPs or in the lower end of the upper-range ETPs

Hyosung - Resin Manufacturer

- New PK plant, Ulsan, Korea
- 50 kta expandable to 100 kta
- PK neat resin pellets, powder products
- Special grades available

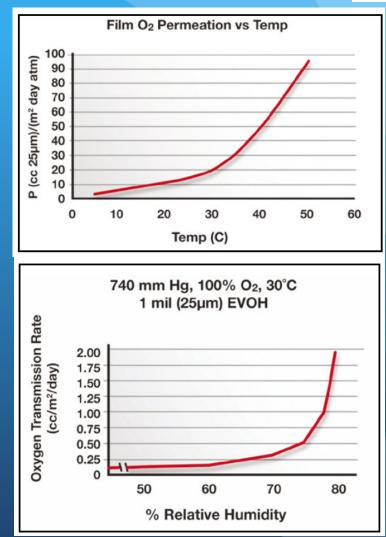
 Esprix provides Application Development, Marketing, Sales, Compounding, Warehousing & Distribution, Technical Support in North America

Basic Mechanical Properties

Propert	У *	Units	РК	EVOH 32% PE	PVDC	PA6
Density		g/cm ³	1.24	1.19	1.70	1.14
Tensile Strength	Conditioned Wet	MPa	70 60	34	40	80 35
Break Strain	Conditioned Wet	%	270 390	15	70	17 360
Flexural Modulus	Conditioned Wet	MPa	1800 1450	2700**	400**	2000 675
Charpy Notched Impact Strength Charpy Unnotched Impact Strength		kJ/m ²	NB NB	- 2.0	-	18 NB

Conditioned: 23C, 50% RH, 24hr; **Wet**: 23C, 90%RH, 60 days ** Tensile Modulus

Thermal Properties


Property	РК	EVOH 32% PE	PVDC	Type 6 Nylon
Melt Temperature, C	220	158-183	158	220
Glass Transition, C Dry Wet	15 -15	57	-17 -	47 8
Peak Crystallization Temperature, C	178	161	77	175

Permeability

- Concentration Gradient
- Temperature
 - 5-7% increase in permeation per degree C¹
 - Test data derived in controlled conditions vs. field conditions (variable)
 - Relative Humidity
 - Significant effect for some resins
 - Material thickness variations
- Specific material composition

The net result is that it is difficult to accurately compare permeability data from various sources - permeability is the nightmare of units!

Oxygen Permeability Values

Material	Temperature, °C	Relative Humidity	Permeability cc-mil/100in ² -day-atm
EVOH ₃₂	20	65	0.02
EVOH ₃₂	20	85	0.076
EVOH ₄₈	20	65	3.2
EVOH ₄₈	20	90	8.0
PVDC	23	65	0.5
PA6 (oriented)	25	60	2.1
PA6(oriented)	23	90	3.8
РК	23	65	2.5
РК	20	65	2.0

 $EVOH_{32} = 32\%$ Mol PE content; $EVOH_{48} = 48\%$ mol PE content

Moisture Vapor Transmission Rates

Material	Temperature, °C	Relative Humidity	MVTR g-mil/100 in ² -day- atm
EVOH ₃₂	40	90	3.4
EVOH ₄₈	40	90	1.8
PVDC	38	90	0.2
PA6 (oriented)	40	90	9
РК	40	90	3.7

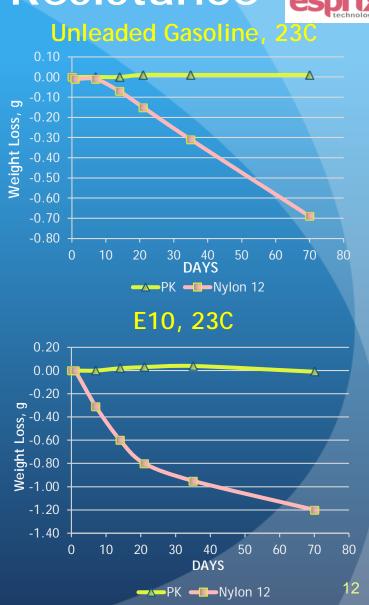
 $EVOH_{32} = 32\%$ Mol PE content; $EVOH_{48} = 48\%$ mol PE content

Permeability of other gases

Material	H2	CO2	N2
EVOH ₃₂	30	0.81	0.017
EVOH ₄₈	200	7.1	0.13
PVDC	-	0.1-2.4	0.01-0.2
РК	11	9.9	2.4

Units for all other than N2 for PK are cc-mil/100in²-day-atm Units for N2 for PK are 10⁹ cc/cm²-s-bar measured on 0.5 mm thick sheet

Fuel Permeation Resistance

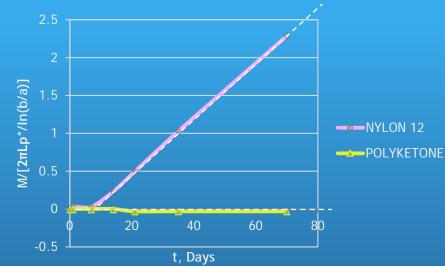


Lower Fuel Permeation PK vs. PA-12

- GM 9061-P Permeability Test protocol
- Gravimetric analysis of sealed polymeric tubing
- Electrically conductive PK compounds
 => extrusion of fuel tubing lines

> KPI's:

- •Excellent Chemical Resistance to Hydraulic Fluids, Antifreeze, Road Salt, Aqueous Solutions
- •Greater Impact Strength
- •Anti-stat / electrically conductive extrusion grades


Data from Shell Chemical, 1996

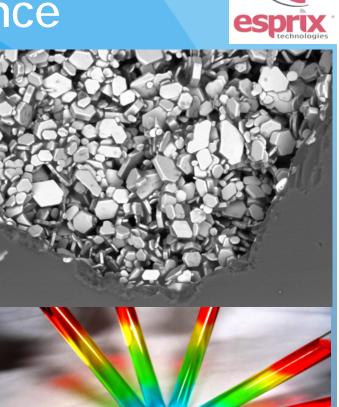
Fuel Permeability Results

UL Gasoline 23C

Linear regression of the slopes of weight loss curves at steadystate vs. time gives the Permeability, P, of fuel through the polymer tubing.

CALCULATIONS SUMMARY of FUEL PERMEABILITY and LOSS

		Permeability, P (cm/s) (x 10 ⁻⁶)			Steady-	state Loss, g/	<u>'(m²-day)</u>
	Temperature,						
Type of Fuel	<u>oC (oF</u>)	<u>PK</u>	<u>PA12</u>	<u>PTFE</u>	<u>PK</u>	<u>PA12</u>	<u>PTFE</u>
UL Gasoline	23 (73)	≈ 0	3,171	No Data	≈ 0	1.4	No Data
UL Gasoline	93 (200)	328	86,152	2,428	0.9	243.1	6.9
E10	23 (73)	47	2,281	No Data	0.02	0.9	No Data
E10	93 (200)	1,084	6,504	2,168	3.1	18.7	6.2

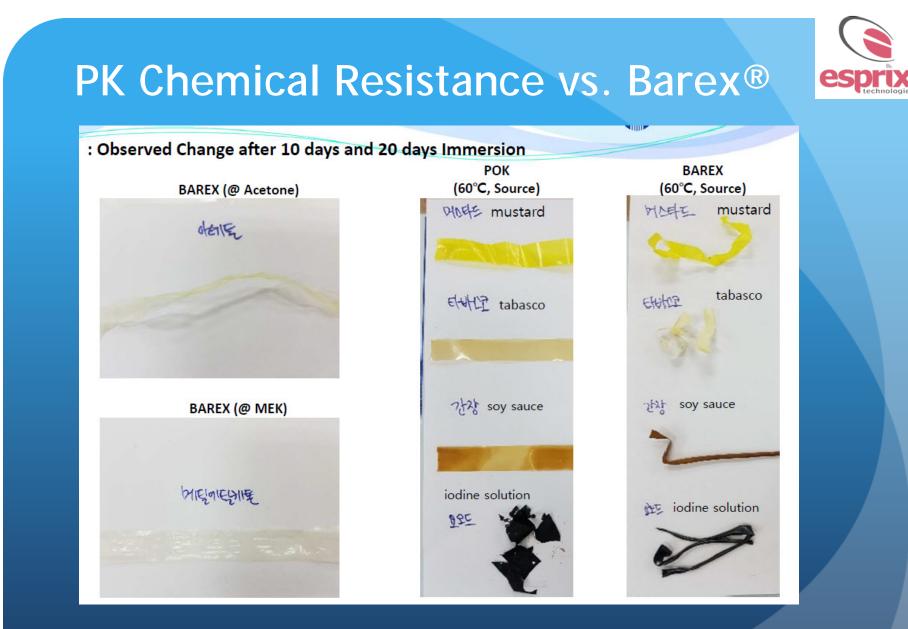


PK - Chemical Resistance

Polyketone resins exhibit excellent resistance to a broad range of chemicals:

- Aromatic & Aliphatic Hydrocarbons
- Ketones, Esters & Ethers
- Inorganic Salt Solutions
- Weak Acids & Bases
- There are in fact few known solvents for PK resins.

The resin structure also confers excellent permeation resistance to aliphatic and aromatic hydrocarbons.


Chemical Resistance of PK v. Barex[®] in films

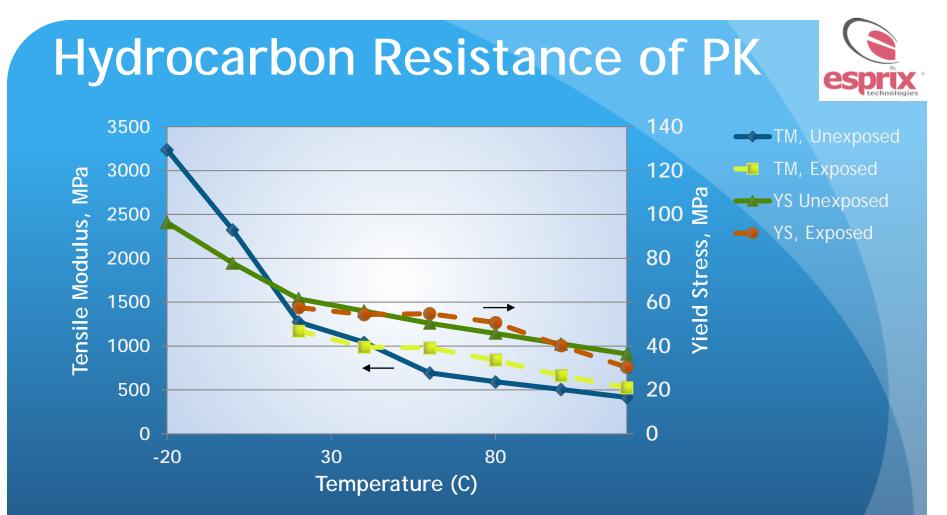
: Observed Change after 10 days and 20 days Immersion

C I 	-	10day	20	day
Solvent/Source	Temp.	POK	РОК	BAREX
File I Alex Let	23°C	None	None	None
Ethyl Alcohol	38°C	None	None	None
	23°C	None	None	None
Ethylene Glycol	38℃	None	None	None
	23°C	None	None	None
Isopropyl Alcohol	38°C	None	None	None
D	23℃	None	None	None
Benzene	38℃	None	None	None
T 1 1 1 1 1 1 1	23℃	None	None	None
Toluene	38℃	None	None	None
Xylene	23°C	None	None	None
	38℃	None	None	None
D-Limonene	23℃	None	None	None
	38℃	None	None	None
Anna	23℃	None	None	Frosted, Softened
Acetone	38℃	None	None	Frosted, Softened
Markel File L Katana	23°C	None	None	Frosted, Softened
Methyl Ethyl Ketone	38°C	None	None	Frosted, Softened
	23°C	None	None	None
Methyl Isobutyl Ketone	38℃	None	None	None
Courses	23℃	Discolored	Discolored	Discolored
Soy sauce	60°C	Discolored	Discolored	Discolored, Shrunk
Tahaaa ayyaa	23℃	Little Discolored	Little Discolored	Little Discolored
Tabasco sauce	60°C	Little Discolored	Little Discolored	Discolored, Swell
Martinel and	23℃	Discolored	Discolored	Discolored
Mustard sauce	60°C	Discolored	Discolored	Discolored, Shrunk
C. P. 1. 2	23℃	Discolored	Discolored	Discolored
Iodine solution	60°C	Discolored, Brittle	Discolored, Brittle	Discolored, Shrunk

Data courtesy of Hyosung Corporation

Image courtesy of Hyosung Corporation

PK & Barex[®] Tensile Strength **Retention after chemical exposure**


			-
Solvent/Source	% of Retained Elongatio	n after 20 days Immersion	Conclusion
Solvent/Source	POK	BAREX	Conclusion
Ethyl Alashal	100	54	Battan
Ethyl Alcohol	91	30	Better
Ethylene Glycol	104	81	Better
	96	92	Better
Incompanyal Alegahal	95	79	DOK 20°C mores
Isopropyl Alcohol	19	89	POK 38°C worse
Demonstra	94	93	Detter
Benzene	52	36	Better
Teluene	93	49	Battar
Toluene	91	10	Better
Malawa .	83	56	D. H.
Xylene	75	17	Better
Dilimana	99	92	Detter
D-Limonene	80	69	Better
Acatoma	100	178	Better (BAREV Swell)
Acetone	80	122	Better (BAREX Swell)
Marthad Etheral Martana	76	148	Better (BAREX Swell)
Methyl Ethyl Ketone	12	27	POK 38°C worse
	100	100	
Methyl Isobutyl Ketone	97	100	-
6	97	20	D. H.
Soy source	55	-	Better
Tabasaa sausa	91	68	Pattar
Tabasco sauce	92	-	Better
Mustavel course	100	99	Battan
Mustard sauce	80	-	Better
Lodino colution	8	30	Red (All comple)
Iodine solution	0	-	Bad (All sample)

+ 0 day The value of elongation at Break : POK 366%, BAREX 121%, The data after 20day immersion.

+ BAREX (Source, 60°C) : Not available for tensile test due to badly deformed shape.

Data courtesy of Hyosung Corporation FlexPackCon 2017

Excellent property retention after exposure to hydrocarbon fuels

Exposure: 4 months in Multicomponent Hydrocarbon Liquid: Benzene 1%; Toluene 7%; Xylene 11%; Cyclopentenes 6%; Cyclohexanes 6%; C4-C5 17%; C6-C10 42%; C11 10%

Data provided by Shell Canada, 1999

PK - Hydrolysis Resistance

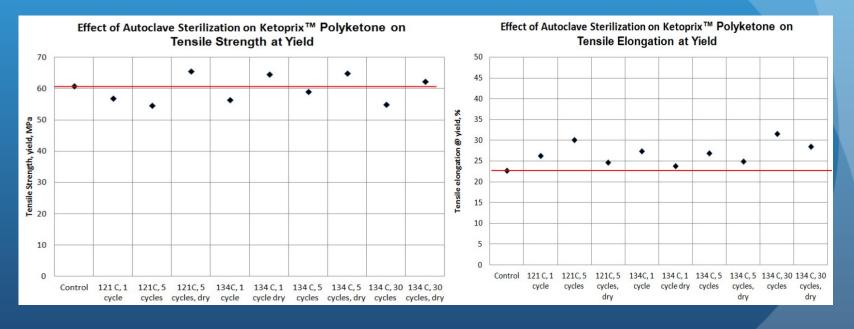
Tensile Strength at Yield at 23C after 25-day exposure to various aqueous environments:

Chemical	POLYKETONE	Polyamide 66
	M630A	
	MPa	MPa
Control (50% Rh)	60.0	57.2
Water	59.2	33.1
Seawater	60.0	33.1
5% w/w Acetic Acid	54.9	33.8
5% w/w Calcium Chloride	60.0	33.8
50/50 Antifreeze	59.2	35.8

Tensile testing to ASTM D638 was conducted at 23°C

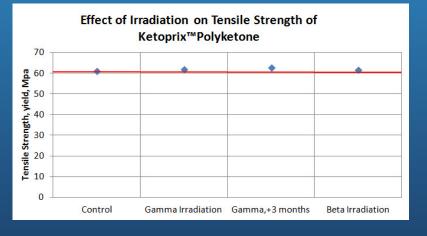
With its C-C backbone, PK has excellent hydrolysis & chemical resistance

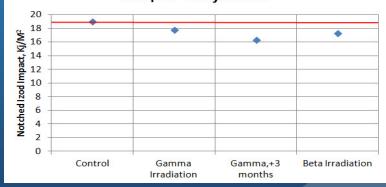
PK resistance to common sterilization and esprix disinfection techniques


- PK is resistant to effects of all common sterilization techniques
 - Autoclave
 - Repeat exposures
 - Irradiation
 - E-beam
 - Cobalt (C₆₀)
 - Gaseous Chemicals
 - Ethylene Oxide (EtO)
- Resistant to effects of common disinfectants
 - Quarternary ammonium compounds

Effects of autoclave sterilization

Strength and ductility of PK are virtually unaffected by sterilization after 30 autoclave cycles @ up to 134C with the wet or dry technique




Effects of irradiation sterilization

Strength & ductility of PK are virtually unaffected by either Gamma or Beta irradiation

Effect of Irradiation on Tensile Elongation of Ketoprix[™] Polyketone

Effect of Radiation on Notched Izod Impact of Ketoprix™Polyketone

Effects of common disinfectants

- PK exhibits excellent resistance to attack by a broad range of chemicals including quarternary ammonium compounds which are commonly used as/in disinfectants
- Immersion in a 10% aqueous solution of ammonium hydroxide at 23C for 100 days had virtually no effect on the tensile strength or ductility of PK

Sample	Tensile Strength, psi	Tensile elongation, yield, %
Control	8,294	25
Exposed	8,294	23

Regulatory Approvals

- NSF 61 approval for potable water
 - Up to 170 in²/L contact area

• FDA FCN# 1562

- Approved for use in articles intended for repeated use in food processing establishments, for multilayer flexible packaging for refrigerated food products and for reheatable or microwaveable rigid retort packaging for food, except in contact with infant formula and breast milk
- Currently limited to a maximum thickness of 0.010". Approval for larger thicknesses expected 4Q17
- E/U 10/2011 approval for food contact applications

NSF 61 approval for PK

NSF International

OFFICIAL LISTING

NSF International Certifies that the products appearing on this Listing conform to the requirements of NSF/ANSI Standard 61 - Drinking Water System Components - Health Effects

This is the Official Listing recorded on February 6, 2015.

Hyosung Corporation 183, Hogey-dong, Donan-Gu Anyang-Si, Gyeonggi-Do 431-080 Republic of Korea 82 31 428 1352

Facility: Ulsan, Republic of Korea

Potable Water Materials

Trade Designation	End Use	Water Water Contact Contact Temp Material
Potable Water Materials		
Polyketone M230A ^[1]	F,P	C. HOT OTHER
Polyketone M330A [2]	F,P	C. HOT OTHER
Polyketone M630A [3]	F,P	C. HOT OTHER

Certified for a maximum surface area to volume ratio of 500 sq. in./L.
 Certified for a maximum surface area to volume ratio of 400 sq. in./L.
 Certified for a maximum surface area to volume ratio of 170 sq. in./L.

FDA approval for PK

**More about Environmental Decisions and Definitions of Environmental Terms. See also Inventory of Environmental Impact Decisions for Food Contact Substance Notifications

Tie layer resin development

- Effort underway to develop an Esprix proprietary tie layer resin suitable for use with PK & PE resins
 - Based on MAPE chemistry
 - Early success achieved in trial quantities
 - Development ongoing targeting commercialization 4Q17-1Q18

PK film for packaging & industrial applications

- Incumbent Material: PE-EVOH
- Film thickness: 0.5-20 mils
- Customer requirements:
 - Effective gas barrier for N₂, H₂SO₄, CH₄, CO₂,O₂,H₂O
 - Chemical Resistance Crude Oil, Fuel, acids, alkalai ightarrow
 - Low moisture absorption igodol
 - **Dimensional Stability** ightarrow
 - Good scratch & mar resistance
- Value Proposition:
 - Better physical property retention than PE-EVOH
 - Gas Barrier performance similar to PE-EVOH at significantly lower cost \bullet
 - Better resistance to attack by fuels than PA11 & PA12 at significantly lower ightarrowcost
 - Ability to achieve performance of multi-layer EVOH structure with a single \bullet layer of PK

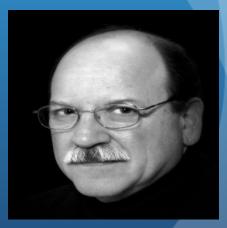
Polyketone flexible packaging in medical application

- Application Laminates for ringer bag (Film)
- Application Description Transparent packaging laminates for ringer solution
- Processing Co-extrusion with PP (sealing temperature: 150~160°C)
- Incumbent material PP(25μm) / PP+Rubber(150μm) / PP(25μm)
- Drivers for conversion Oxygen gas barrier performance and system cost vs. EVOH
- Key Requirements
 - Transparency(Haze $5\downarrow$ at 200 μ m)
 - Gas barrier, low temperature impact resistance, flexibility
 - Non-PVC, processability of adhesion with PP
- Compelling Value Propositions
 - Low oxygen permeability with mono layer(0.1 cc.mm/m²/day/atm)
 - Cost reduction with thinner layer
 - FDA approval

Summary & Conclusions

- Polyketone is a new engineering resin now commercially available with the following benefits:
 - Unique combination of high strength and good ductility
 - Excellent resilience
 - Excellent puncture resistance
 - High heat resistance
 - Good permeation and vapor transport characteristics
 - Excellent chemical resistance
 - Excellent hydrolysis resistance
 - Virtually impervious to the effects of common sterilization & decontamination techniques
 - Excellent adhesion to PP
 - Regulatory (FDA & NSF) approvals in place
 - Appealing economics vs. EVOH, PVDC, PA11,PA12

Ketoprix Team


Cary Veith – President & CEO

Dang Le – Product Manager

Tim Morefield – TS Consultant

Bob Pilotti - Sales Consultant

Thank You

Tim Morefield

Esprix Technologies, LP

7680 Matoaka Rd.

Sarasota, FL 34243

cveith@esprixtech.com

www.esprixtech.com

