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Outline

 Megatrends & applications in packaging
► Key markets & current drivers for transparent vacuum barrier films 

 Key vacuum R2R processing technologies for the transparent barrier sector
► Standard reactive evaporation of AlOx

► Plasma assisted reactive evaporation of AlOx

 Clear barrier performance
► Impact of plasma assistance

► Tensile testing & impact on downstream processability

 Summary
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Megatrends & Applications in Packaging
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Megatrends
 Changing brand awareness & customer perception

► Cultural westernization driving single household, small volume packages
► Emergence of “green” ecologically friendly brands & products with reduced CO2 footprint

− Sustainable & recyclable packaging

 Brands leveraging value chain to reduce cost
► Definition of harmonized packaging formats
► Material specification standardization

 Accelerated evolution in market driven requirements
► Increased shelf life
► Replacement of expensive, non-recyclable high CO2 footprint Aluminum foil from laminates
► Visibility of package content for the consumer
► Change in form factor with migration from rigid packaging to flexible packaging
► Down-gauging materials to provide the correct balance between package appearance, cost & mechanical rigidity
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Motivation for Transparent “Ceramic” Barrier Adoption in Packaging
 Metallized polymer film sphere of application limited

► No visibility of packaged product
► Cannot be X-ray screened
► Cannot be microwaved 

 Enhanced performance when compared with traditional clear barriers
► Low cost
► Improved recyclability
► Barrier layer thickness in nm range as opposed to µm range for wet processed PVdC & EVOH
► Minimized barrier loss at high humidity levels 

 Typical applications for ceramic barriers in packaging
► Pouches for liquids, dry foods, sauce etc.
► Sachets
► Lidding materials for pasta, meats etc.
► Medical, pharmaceutical & healthcare packaging 
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Global Market Volume Within Transparent Packaging
 Transparent ceramic oxide barrier market currently niche but growth outstripping traditional alternatives

► EVOH market share ~ 52.5%
► PVdC coated material market share ~ 43% with CAGR (2015) ~ -0.3%  
► Vacuum deposited transparent oxide market share ~ 4.4 % with CAGR (2015) ~ 7.7%  

− 70 % AlOx

− 30 % SiOx
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Key R2R Processing Technology for the 
Clear Barrier Sector
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 Plasma assisted AlOx evaporation
► High density oxygen plasma expands into evaporated Al plume 
► Molecular oxygen strongly dissociated & incorporated at 

growth surface
► High degree of control of energetic particle flux to growth 

surface significantly expanding process window

 Standard AlOx evaporation
► Addition of oxygen gas to evaporated Al plume 
► Molecular oxygen weakly dissociated & incorporated at growth 

surface to result in growth of AlOx layer 
► Little control on AlOx layer density & morphology during growth 

& small process window for required stoichiometry
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Transparent Aluminum Oxide Deposition Paths
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Mechanism Behind Layer Morphology Improvement
 Plasma assisted deposition results in improved adsorbate mobility at the growth surface

► Energetic particle flux substantially increased permitting “high surface temperature chemistry” at low substrate temperatures
− Particle energy ~ 0.16 eV in traditional reactive AlOx deposition

− Particle energy > 10 eV in plasma assisted AlOx deposition

► Improved nucleation performance eliminating coating voids & reducing the thickness required for a continuous layer
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Clear Barrier Performance



|  External Use

Impact of Plasma Assistance on Layer Morphology
 Clear migration from columnar growth structure to amorphous, grain free microstructure with high plasma 

density oxygen plasma within the deposition plume at high deposition rates (~100 nm/s)
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Impact of Plasma Assistance on Layer Density
 Layer density increases considerably with increasing energetic particle flux

► Measured using X-Ray reflectivity
► Density increases by ~ 20% under high plasma density/current deposition conditions
► Layer densities for high energetic fluxes approach sputtered stoichiometric Al2O3 values

− Significant improvement observed when compared with conventional thermally evaporated AlOx layers
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Void Defect Reduction Through Use of Plasma Assistance
 SEM analysis of AlOx layers prepared without and with plasma assistance show clear differences in void 

density
► Standard AlOx layer shows higher void density during layer incubation phase close to the PET substrate interface
► Plasma assisted AlOx void density significantly lower & more evenly distributed thoughout layer

AlOx layer, deposited without plasma
Average void size ~ 13.6 nm
Average void density ~ 12 x higher than with plasma

AlOx layer, deposited with plasma
Average void size ~ 15 nm

AlOx Layer

Substrate

Void
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Impact of Defects on Barrier Performance 
 Defects in AlOx layer impact permeation

► Permeation rate increases with square of the defect radius
► Crank diffusion calculations based on measured void size & density used to predict difference in standard & plasma assisted AlOx water 

vapor diffusivity
− Defect size & spacing result in ~ 2.5 x lower permeation rates for plasma assisted AlOx compared with standard evaporation!
− Correlates well with experimental data (see following slides) 
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Impact of Plasma Source Drive Current on Performance 
 Hollow cathode source drive current strongly impacts barrier performance on a broad range of substrates

► WVTR decreases with increased current irrespective of substrate material used
► Increasing energetic particle flux incident at substrate surface substantially impacts both nucleation & growth process 
► Substrate surface energies no longer plays significant role on defining AlOx thickness required for dense, void free layer 

deposition
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Impact of Layer Thickness for AlOx on PET
 Barrier performance initially improves with increased layer thickness prior to saturation

► Dependent primarily on AlOx surface coverage
► Typical food packaging barrier layers ~ 10-15 nm in thickness dependent on application
► AlOx barrier layers ~ 10 nm thick preferred for mechanical crack resistance during handling & downstream processing
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Factors Impacting Tensile Failure
 Defect size, (2l), impacts stress required to induce brittle fracture in AlOx layer

► Critical stress similar for both standard & plasma assisted AlOx layer but lower for standard AlOx due to reduced hardness/elastic modulus

 Reduced void density eliminates mechanically weak stress concentration zones within coating thickness
► Weibull modulus increases with reduction in void density

− Plasma assisted AlOx = high Weibull modulus

− Standard AlOx = low Weibull modulus

► Significant impact on tensile strength & resultant improved tensile reliability for plasma assisted AlOx
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Impact of Plasma Assistance on Mechanical Durability
 Plasma assisted AlOx deposition on PET show ~ 60% improvement in mechanical durability/critical strain 

& barrier performance compared with reactive AlOx
► Critical strain inherent to quality of AlOx layer itself rather than substrate (critical strain on PET   critical strain on BOPP)
► Initial slow degradation in barrier performance = crack generation in direction orthogonal to applied stress
► Rapid barrier performance degradation = unstable crack generation & propagation in direction of applied stress (catastrophic failure)
► Standard AlOx layer barrier ~ 50% higher than for plasma assisted AlOx
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Critical Radius of Curvature vs Critical Strain
 Consider simple bi-layer system

► AlOx on BOPP with critical strain values measured
► Critical radius to fracture strong function of thickness ratio & elastic modulus ratio

► For 10 nm AlOx layer on 12 µm thick BOPP substrate
− Standard AlOx layer critical radius ~  0.41 mm

− Plasma assisted AlOx layer critical radius ~  0.29 mm

− Substrate stiffness controls ease of handling in tools (reduced wrinkling rather than crack generation

► AlOx layer & substrate thickness to be minimized to improve crack resistance
► Plasma assisted AlOx layer more mechanically robust than standard evaporated AlOx
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Impact of AlOx Conversion on Performance
 10 nm thick AlOx layers post-processed using gravure topcoat & lamination to determine suitability for use in 

pouch
► Gravure topcoat provides mechanical protection of “ceramic” barrier layer
► WVTR shows considerable improvement in laminated package form for plasma assisted AlOx

► Standard AlOx cracks during Gelbo flex test & water barrier performance is partially lost
► Plasma assisted AlOx shows increased crack resistance & small deterioration in barrier performance level after Gelbo flex test 
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Step Normalized 
WVTR

(Standard)

Normalized
WVTR

(Plasma)

Norm. OTR 
(Standard)

Norm. OTR 
(Plasma)

As Deposited 100% 100% 100% 100%

Topcoated 25% 18% 8% 6%

Laminated 25% 9% 8% 6%

Gelbo Test 65% 14% Not Measured Not Measured

Plasma assisted AlOx provides required stability for implementation in  broad range of pouch designs



|  External Use

Summary
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Summary 
 Plasma assisted AlOx deposition show clear performance advantages compared with 

standard, reactively evaporated AlOx layers on PET & BOPP
► Barrier performance levels improved by  50%
► Void density in bulk plasma assisted AlOx layer ~ 90% lower than for standard reactively evaporated layer
► Critical radii before fracture ~ 40% lower = improved downstream processability & yield
► Converted plasma assisted AlOx layer shows significant retention of barrier performance following addition of topcoat & 

lamination
► Mechanical performance of plasma assisted AlOx layer well suited for high stress applications including pouches & 

sachets
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Substrate Uncoated 
WVTR

Standard 
AlOx WVTR

Plasma 
Assisted 
AlOx WVTR

Uncoated 
OTR

Standard 
AlOx OTR

Plasma 
Assisted 
AlOx OTR

PET (12 µm) 40-50 ≤ 0.7 ≤ 0.35 100-140 ≤ 1.6 ≤ 0.8
BOPP
(20 µm)

4-9 ≤ 7 ≤ 0.30 2000-2500 ≤ 50 ≤ 35




