

Improving the Performance of Ceramic Barrier Layers used in Packaging Materials

Roland Trassl

Senior Manager Advanced Development Applied Materials WEB Coating GmbH AIMCAL Tampa, Florida, USA 18th October, 2017

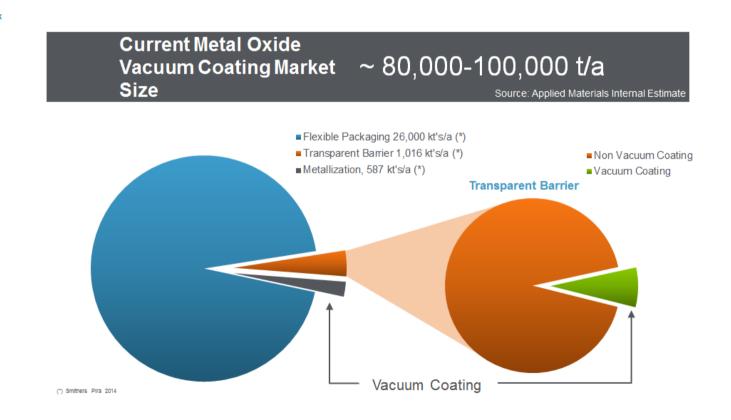
Outline

- Megatrends & applications in packaging
 - ▶ Key markets & current drivers for transparent vacuum barrier films
- Key vacuum R2R processing technologies for the transparent barrier sector
 - ▶ Standard reactive evaporation of AIO_x
 - Plasma assisted reactive evaporation of AlO_x
- Clear barrier performance
 - ► Impact of plasma assistance
 - ▶ Tensile testing & impact on downstream processability
- Summary

Megatrends & Applications in Packaging

Megatrends

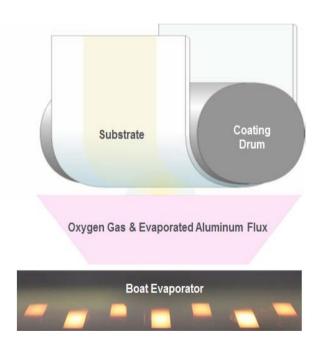
- Changing brand awareness & customer perception
 - Cultural westernization driving single household, small volume packages
 - ▶ Emergence of "green" ecologically friendly brands & products with reduced CO₂ footprint
 - Sustainable & recyclable packaging
- Brands leveraging value chain to reduce cost
 - Definition of harmonized packaging formats
 - Material specification standardization
- Accelerated evolution in market driven requirements
 - Increased shelf life
 - ▶ Replacement of expensive, non-recyclable high CO₂ footprint Aluminum foil from laminates
 - Visibility of package content for the consumer
 - Change in form factor with migration from rigid packaging to flexible packaging
 - Down-gauging materials to provide the correct balance between package appearance, cost & mechanical rigidity

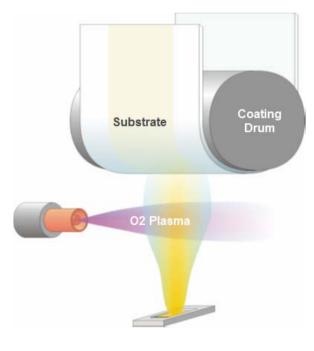

Motivation for Transparent "Ceramic" Barrier Adoption in Packaging

- Metallized polymer film sphere of application limited
 - No visibility of packaged product
 - Cannot be X-ray screened
 - Cannot be microwaved
- Enhanced performance when compared with traditional clear barriers
 - Low cost
 - Improved recyclability
 - ▶ Barrier layer thickness in nm range as opposed to µm range for wet processed PVdC & EVOH
 - Minimized barrier loss at high humidity levels
- Typical applications for ceramic barriers in packaging
 - ▶ Pouches for liquids, dry foods, sauce etc.
 - Sachets
 - Lidding materials for pasta, meats etc.
 - Medical, pharmaceutical & healthcare packaging

Global Market Volume Within Transparent Packaging

- Transparent ceramic oxide barrier market currently niche but growth outstripping traditional alternatives
 - ▶ EVOH market share ~ 52.5%
 - ▶ PVdC coated material market share ~ 43% with CAGR (2015) ~ -0.3%
 - ▶ Vacuum deposited transparent oxide market share ~ 4.4 % with CAGR (2015) ~ 7.7%
 - 70 % AIO_x
 - 30 % SiO_x

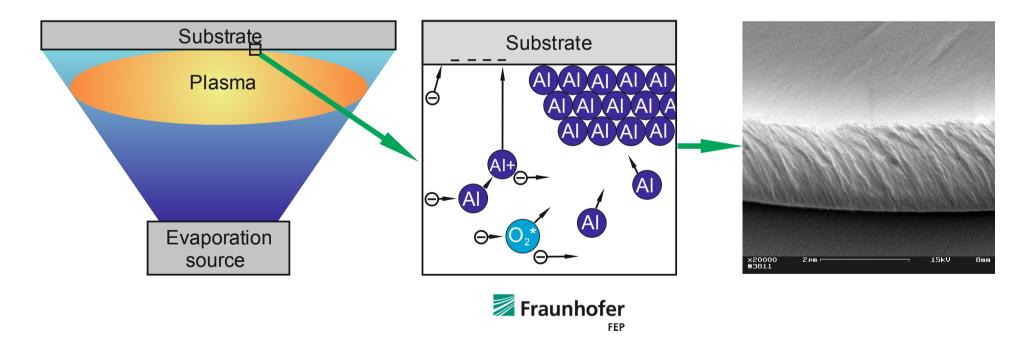

Key R2R Processing Technology for the Clear Barrier Sector



Transparent Aluminum Oxide Deposition Paths

- Standard AlO_x evaporation
 - Addition of oxygen gas to evaporated AI plume
 - Molecular oxygen weakly dissociated & incorporated at growth surface to result in growth of AIO_x layer
 - Little control on AIO_x layer density & morphology during growth & small process window for required stoichiometry

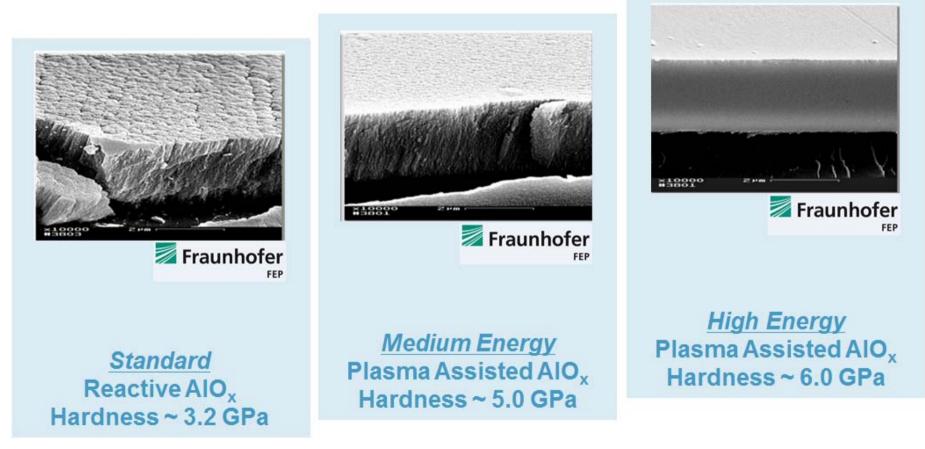
- Plasma assisted AlO_x evaporation
 - ► High density oxygen plasma expands into evaporated Al plume
 - Molecular oxygen strongly dissociated & incorporated at growth surface
 - High degree of control of energetic particle flux to growth surface significantly expanding process window



APPLIED MATERIALS

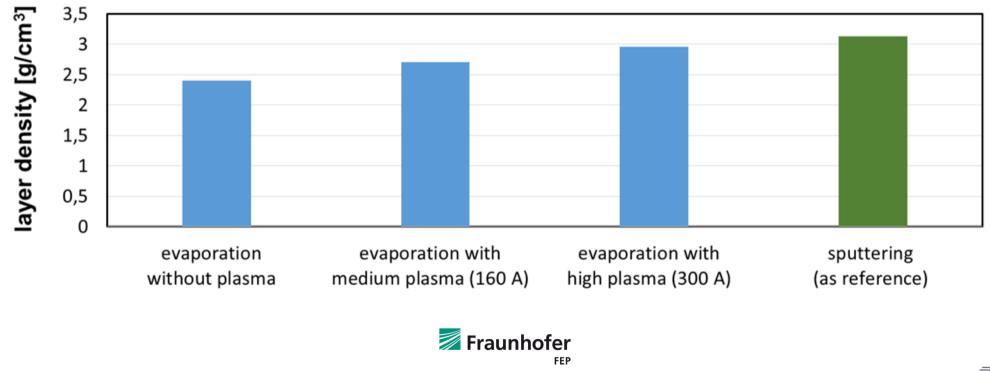
Mechanism Behind Layer Morphology Improvement

- Plasma assisted deposition results in improved adsorbate mobility at the growth surface
 - ► Energetic particle flux substantially increased permitting "high surface temperature chemistry" at low substrate temperatures
 - Particle energy ~ 0.16 eV in traditional reactive AIO_x deposition
 - Particle energy > 10 eV in plasma assisted AIO_x deposition
 - ▶ Improved nucleation performance eliminating coating voids & reducing the thickness required for a continuous layer



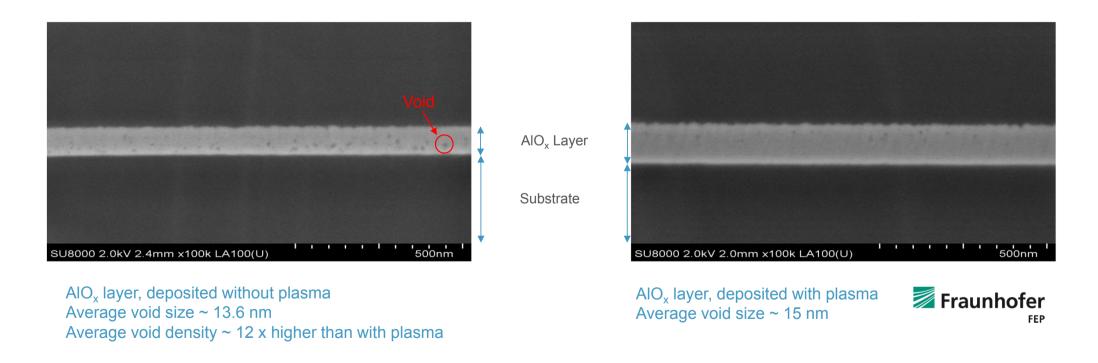
Clear Barrier Performance

Impact of Plasma Assistance on Layer Morphology

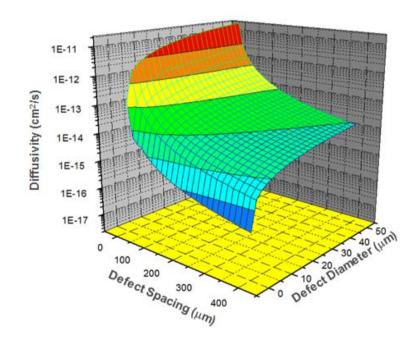

 Clear migration from columnar growth structure to amorphous, grain free microstructure with high plasma density oxygen plasma within the deposition plume at high deposition rates (~100 nm/s)

APPLIED

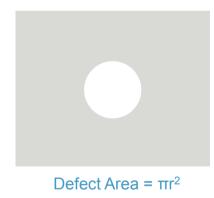
Impact of Plasma Assistance on Layer Density


- Layer density increases considerably with increasing energetic particle flux
 - ▶ Measured using X-Ray reflectivity
 - ▶ Density increases by ~ 20% under high plasma density/current deposition conditions
 - ► Layer densities for high energetic fluxes approach sputtered stoichiometric Al₂O₃ values

- Significant improvement observed when compared with conventional thermally evaporated AIO_x layers

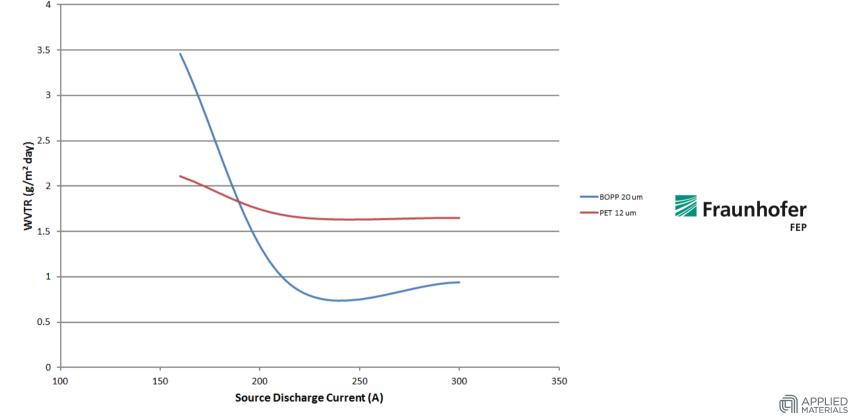

Void Defect Reduction Through Use of Plasma Assistance

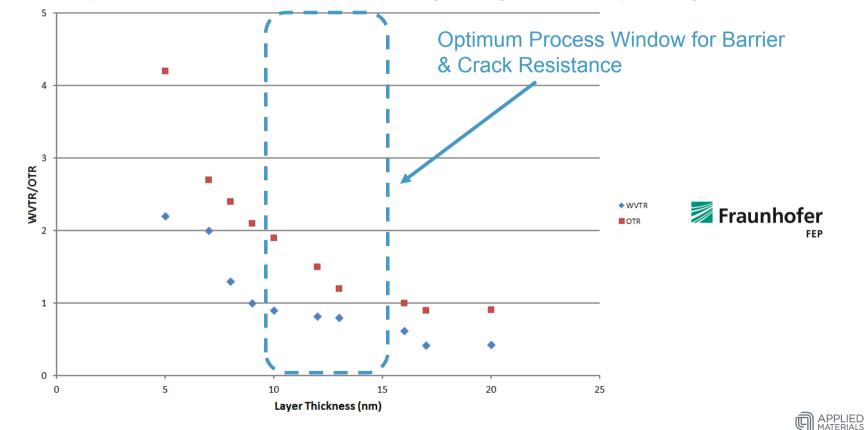
- SEM analysis of AIO_x layers prepared without and with plasma assistance show clear differences in void density
 - ▶ Standard AIO_x layer shows higher void density during layer incubation phase close to the PET substrate interface
 - ▶ Plasma assisted AlO_x void density significantly lower & more evenly distributed thoughout layer



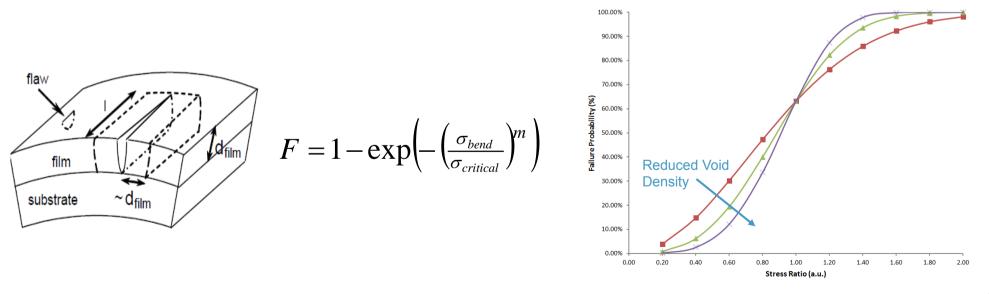
Impact of Defects on Barrier Performance

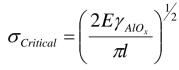
- Defects in AIO_x layer impact permeation
 - Permeation rate increases with square of the defect radius
 - Crank diffusion calculations based on measured void size & density used to predict difference in standard & plasma assisted AIO_x water vapor diffusivity
 - Defect size & spacing result in ~ 2.5 x lower permeation rates for plasma assisted AIO_x compared with standard evaporation!
 - Correlates well with experimental data (see following slides)


$$D_{Eff(AlO_x)} = D_{Substrate} f_{Void} + D_{AlO_x} f_{Bull}$$


Impact of Plasma Source Drive Current on Performance

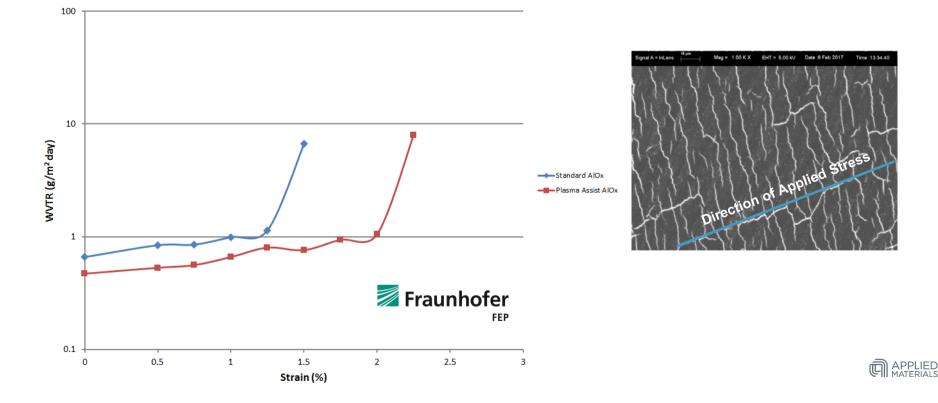
- Hollow cathode source drive current strongly impacts barrier performance on a broad range of substrates
 - ▶ WVTR decreases with increased current irrespective of substrate material used
 - ▶ Increasing energetic particle flux incident at substrate surface substantially impacts both nucleation & growth process
 - Substrate surface energies no longer plays significant role on defining AIO_x thickness required for dense, void free layer deposition


Impact of Layer Thickness for AIOx on PET

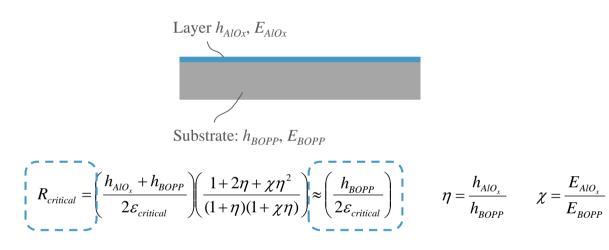

- Barrier performance initially improves with increased layer thickness prior to saturation
 - ► Dependent primarily on AIO_x surface coverage
 - ▶ Typical food packaging barrier layers ~ 10-15 nm in thickness dependent on application
 - ► AIO_x barrier layers ~ 10 nm thick preferred for mechanical crack resistance during handling & downstream processing

Factors Impacting Tensile Failure

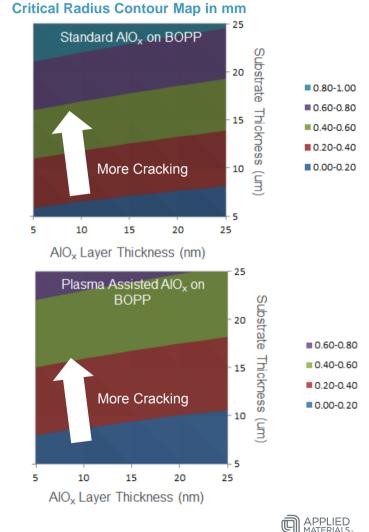
- Defect size, (21), impacts stress required to induce brittle fracture in AIO_x layer
 - Critical stress similar for both standard & plasma assisted AIO_x layer but lower for standard AIOx due to reduced hardness/elastic modulus
- Reduced void density eliminates mechanically weak stress concentration zones within coating thickness
 - Weibull modulus increases with reduction in void density
 - Plasma assisted AlO_x = high Weibull modulus
 - Standard AlO_x = low Weibull modulus
 - Significant impact on tensile strength & resultant improved tensile reliability for plasma assisted AIO_x



APPLIED


Impact of Plasma Assistance on Mechanical Durability

- Plasma assisted AIO_x deposition on PET show ~ 60% improvement in mechanical durability/critical strain & barrier performance compared with reactive AIO_x
 - Critical strain inherent to quality of AIO_x layer itself rather than substrate (critical strain on PET \approx critical strain on BOPP)
 - ▶ Initial slow degradation in barrier performance = crack generation in direction orthogonal to applied stress
 - ▶ Rapid barrier performance degradation = unstable crack generation & propagation in direction of applied stress (catastrophic failure)
 - ▶ Standard AIO_x layer barrier ~ 50% higher than for plasma assisted AIO_x



Critical Radius of Curvature vs Critical Strain

- Consider simple bi-layer system
 - ► AIO_x on BOPP with critical strain values measured
 - ▶ Critical radius to fracture strong function of thickness ratio & elastic modulus ratio

- For 10 nm AIO_x layer on 12 μm thick BOPP substrate
 - Standard AlO_x layer critical radius ~ 0.41 mm
 - Plasma assisted AlO_x layer critical radius ~ 0.29 mm
 - Substrate stiffness controls ease of handling in tools (reduced wrinkling rather than crack generation
- ► AIO_x layer & substrate thickness to be minimized to improve crack resistance
- Plasma assisted AIO_x layer more mechanically robust than standard evaporated AIO_x

Impact of AIO_x Conversion on Performance

- 10 nm thick AIO_x layers post-processed using gravure topcoat & lamination to determine suitability for use in pouch
 - ▶ Gravure topcoat provides mechanical protection of "ceramic" barrier layer
 - ▶ WVTR shows considerable improvement in laminated package form for plasma assisted AlO_x
 - ▶ Standard AIO_x cracks during Gelbo flex test & water barrier performance is partially lost
 - ▶ Plasma assisted AlO_x shows increased crack resistance & small deterioration in barrier performance level after Gelbo flex test

Step	Normalized WVTR (Standard)	Normalized WVTR (Plasma)	Norm. OTR (Standard)	Norm. OTR (Plasma)
As Deposited	100%	100%	100%	100%
Topcoated	25%	18%	8%	6%
Laminated	25%	9%	8%	6%
Gelbo Test	65%	14%	Not Measured	Not Measured

Plasma assisted AIO_x provides required stability for implementation in broad range of pouch designs

APPLIED

Summary

Summary

- Plasma assisted AIO_x deposition show clear performance advantages compared with standard, reactively evaporated AIO_x layers on PET & BOPP
 - ▶ Barrier performance levels improved by \geq 50%
 - ▶ Void density in bulk plasma assisted AIO_x layer ~ 90% lower than for standard reactively evaporated layer
 - ▶ Critical radii before fracture ~ 40% lower = improved downstream processability & yield
 - Converted plasma assisted AIO_x layer shows significant retention of barrier performance following addition of topcoat & lamination
 - Mechanical performance of plasma assisted AIO_x layer well suited for high stress applications including pouches & sachets

Substrate	Uncoated WVTR	Standard AIO _x WVTR	Plasma Assisted AIO _x WVTR	Uncoated OTR	Standard AIO _x OTR	Plasma Assisted AIO _x OTR
PET (12 μm)	40-50	≤ 0.7	≤ 0.35	100-140	≤ 1.6	≤ 0.8
BOPP (20 μm)	4-9	≤ 7	≤ 0.30	2000-2500	≤ 50	≤ 35

