Comparative Study on Carbon Nanotube Coating Methods

MIRWEC FILM NIC NEWBY

October 17th 2017 / AIMCAL R2R CONFERENCE

MIRWEC **Jasui seiki**

Transparent Conductive Film Material Analysis

	ΙΤΟ	AgNW	CNT	Graphene	Conductive Polymer
Sheet Resistivity	100-500 Ω/sq	< 100 Ω/sq	100-500 Ω/sq	>100 Ω/sq	200-500 Ω/sq
Optical Properties	Transparent light yellow	Hazy	Dark	Dark	Transparent light blue
Flexibility	No Good	Good	Good	Good	Good
Weatherability	\bigtriangleup	× (Migration)	0	0	0
Cost	Δ	Δ	Δ	Δ	0

KEY WORD : ITO Alternatives

• Flexibility

• Resource conservation

• Cost

• Low resistivity

Case study - XinNano Material, Inc.

Product: CNT-Polymer Conductive Ink

- Touch Screens
- Flexible Solar Cells

• Smart Windows

- and more!
- Flexible OLED lighting

Initially, XinNano developed conductive film using slot die

Two major issues

1) Sheet resistivity is non-uniform

 \rightarrow Too low tolerance for transparent conductive film

2) "Striping" appears on the coated film \rightarrow A critical defect for transparent conductive film

This led to a coating trial using $MICROGRAVURE^{\text{TM}}$

What is MICROGRAVURE™?

The coating surface coated by using MICROGRAVURE[™] is very smooth and uniform

Sample Production (R2R coating)

Substrate: PET based film

Coating Method: MICROGRAVURE™

Substrate Pretreatment: Corona Discharge

•Hot Air Drying: 160°C for 3 min

Sample Evaluation

1. Sheet Resistivity

•Resistivity meter: Loresta-AX (MITSUBISHI CHEMICAL ANALYTECH)

•Method: the 4 -pin probe method

•Measure 9 points within letter-size sample (as shown here)

•Analysis: Average, standard deviation, coefficient of variation

2. Sheet Appearance

•Visual Inspection: place white paper under the sample

Coat by using MG Coat by using Slot Die 210 210 Sheet Resistivity 200 200 190 180 190 180 Contour Graph 170 170 160 160 150 150 ■ 150-160 ■ 160-170 ■ 170-180 ■ 180-190 ■ 190-200 ■ 200-210 ■ 150-160 ■ 160-170 ■ 170-180 ■ 180-190 ■ 190-200 ■ 200-210 Resistivity(Ω /sq) Ave:179.7 (Min:165, Max:199) Ave:161.9 (Min:159, Max:165) Standard deviation 11.50 2.25 Coefficient of 6.4% 1.4% variation

Summary – Sheet Resistivity #1 (Comparative Coating Method)

MICROGRAVURE™ method improved tolerance of resistivity by 1/5 !

Summary – Sheet Resistivity #2

Sample	Resistivity(Ω/sq)	Standard Deviation	Coefficient of Variation
100 Ω	98.9 (Max: 101, Min: 97.9)	0.73	0.73%
160 Ω	161.9(Max: 165, Min: 159)	3.02	1.4%
200 Ω	201.9 (Max: 208, Min: 195)	3.02	1.5%
320 Ω	321.4 (Max: 326, Min: 317)	2.09	0.9%
400 Ω	401.1 (Max: 410, Min: 392)	4.12	1.0%

The tolerance of all samples coated by MG was good! (All coefficients of variation are under 1.5%)

Appearance - "Striping"

In the MICROGRAVURETM sample, thinner coating (Under 150 Ω /sq) is very good However, "Striping" appeared on the thicker coating (100 Ω /sq) sample sheet.

We did "multi layer coating" with MICROGRAVURE[™] (One of the many benefits of MG is that it is easy to do multilayer coating.)

⇒ Results: No Striping

Conclusion

- 1. Sheet Resistivity
 - The sheet resistivity is much more uniform with MICROGRAVURE[™] compared to slot die
 - It is possible to coat large area
- 2. Striping
 - High resistivity(>150 Ω) = No striping
 - Low resistivity(100 Ω) = Multilayer coating by MICROGRAVURE[™] resolved striping

MICROGRAVURE[™] coating resulted in conductive film with uniform sheet resistivity and no striping

Acknowledgments

We are grateful to Dr Kun Bai (XinNano Material, Inc.) for her cooperation.

