SELECTING THE BEST IDLER SIZE

RONALD LYNCH RJLYNCH & ASSOCIATES, LLC

WHY IDLERS MATTER

- Idlers influence the highest and lowest tension we can run in a web path.
- Idler bearing drag and inertia upset tension during acceleration and deceleration.
- Idlers can defeat the most sophisticated tension control systems.
- Idler diameter affects a lot of things.

HOW IDLERS AFFECT TENSION

HOW IDLERS AFFECT TENSION

The location of the tension idler matters.

BEARING DRAG

A simple bearing torque formula

Torque.bearing =
$$\tau + \gamma \omega$$

 Restated in terms of radius and tension difference across the idler, the bearing drag force is

$$\Delta T_{\rm b} = \tau / r_{\rm o} + \gamma V / r_{\rm o}^2$$

INERTIAL DRAG

A simple formula for inertial torque

Torque.ineria = $J\alpha$ where $J = mr_0^2$

 Restated in terms of radius and tension difference, the inertial drag is

$$\Delta T_{\rm i} = mA$$

 Calculating the mass from wall thickness, length and density, the tension difference is

$$\Delta T_{\rm i} = \pi (r_{\rm o}^2 - (r_{\rm o} - w)^2) l\rho A$$

COMBINING

• Combining bearing drag and inertial drag $\Delta T = \tau / r_o + \gamma V / r_o^2 + \pi (r_o^2 - (r_o - w)^2) l\rho A$

Plotting total drag vs. radius

Radius, m

COMBINING

The lowest total drag of 0.79 N occurs at 0.082 m.

VALUES FOR THE EXAMPLE IDLER

l =	1	meters	idler shell length
w =	0.0025	meters	shell wall thickness
ho =	1600	kg/m ³	material density
A =	0.25	m/sec ²	linear acceleration
V =	5	m/sec	linear velocity
$\alpha =$	0.005	N-m	bearing static drag
$\gamma =$	0.0003	(N-m)/sec	bearing viscous drag
P =	50	N/m	resultant web load
k =	9.87		SI natural freq const
E =	7.00E+10	N/m^2	Young's modulus of shell

Table 1 - Typical idler values for a generic carbon composite idler

MINIMUM TENSION

Lower Tension Failure Limit

Loss of traction with idlers defines a lower tension limit.

 $T_l > \frac{Total \ Drag}{e^{\mu\theta} - 1}$

MINIMUM TENSION

$$T_l$$

$$Drag$$

$$T_h = T_l + Drag + MA$$

Lower Tension Failure Limit

□ Loss of traction with idlers defines a lower tension limit.

$$T_{l} > \frac{\tau/r_{o} + \gamma V/r_{o}^{2} + \pi (r_{o}^{2} - (r_{o} - w)^{2}) lrA}{e^{\mu\theta} - 1}$$

MINIMUM TENSION

MAXIMUM TENSION

 Nominal tension must keep the peaks below the damage limit for the web.

DEFLECTION-SAG

Sag of the shell is important for a symmetrically and simply supported hollow shell idler.

DEFLECTION-SAG

For an acceptable mid-point sag of 0.00015 m/m, any shell greater than 0.045 m is acceptable.

Radius, m	0.04	0.045	0.05	0.055	0.06	0.065	0.07	0.075	0.08	0.085
Sag, m	0.000201	0.000139	0.000101	0.000075	0.000058	0.000045	0.000036	0.000029	0.000024	0.000020

DEFLECTION-SAG

- A 0.045 m radius idler designed as in Table 1 will have 1.13 N of total drag; 40% more total drag than the 0.79 N of a similarly designed idler with 0.082 m radius.
- Its steady state drag will be 0.85 N vs. 0.28 N for the optimum idler diameter; 300% higher.
- Smaller is not always better!

BENDING RADIUS OF WEB

Bending strain can damage the web in extension or compression.

$$\Delta \varepsilon \approx h_{\rm w}/r_{\rm o}$$

Can be a factor for thick webs.

VELOCITY ERRORS

- Velocity of the web, for strain and tension calculations is the pitch line velocity.
- Web thickness change causes velocity change.
- Webs with thickness profiles will have velocity profiles that can cause wrinkles and off tracking.
- Larger radius minimizes both affects.

OTHER FACTORS

Air entrainment

$$h_{\rm a} = 0.643 r_{\rm o} \left[\frac{6\eta (V_{\rm web} + V_{\rm roller})}{T/l} \right]^{2/3}$$

- Critical speed vs. RPM $\omega_c = \frac{k}{2\pi l^2} \sqrt{\frac{lEI}{m}}$
- Dent resistance
- Standard size materials
- Machine size
- **\$**\$

QUESTIONS?

Thank You

Ron Lynch RJLynch & Associates, LLC ronjlynch@hotmail.com