

Disturbance Rejection in a Web Transport System Using a Pendulum Dancer

Benjamin Reish Moad Abudia Karl Reid

Department of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74048 Email: <u>ben.reish@okstate.edu</u>

Motivation

- Primitive Elements
- The Euclid Web Line
- Disturbance Results
- Conclusions

- Increase awareness of Dancer utility
- Create a mathematical model of a physical web line to allow simulation
- Study disturbance rejection capability of a dancer

Primitive Elements

$$L_{n}(t) \frac{dt_{n}(t)}{dt}$$

= $E_{n}A_{n}(v_{n+1} - v_{n}) - V_{n+1}t_{n}(t) + V_{n} \frac{E_{n}A_{n}}{E_{n-1}A_{n-1}} t_{n-1}(t)$

*

*K.-H. Shin, Distributed control of tension in multi-span web transport systems, Stillwater, OK: Ph.D, Oklahoma State University, 1991.

Primitive Elements

The Driven Roller
Torque Balance
Remove Motor constant and damping for idle roller

Linearized

*

$$J_n \frac{dv_n}{dt} = -(B_{fn} + C_{bn})v_n + R_n^2(t_n - t_{n-1})$$
$$-R_n K_{bn} u_n + R_n M_n ge_n sin(\omega_n t + \phi_{n0})$$

*K.-H. Shin, Distributed control of tension in multi-span web transport systems, Stillwater, OK: Ph.D, Oklahoma State University, 1991.

Primitive Elements

*K.-H. Shin, Distributed control of tension in $\frac{1}{2}$ (End to be the spin we be transport systems, Stillwater, OK: Ph.D, Oklahoma State University, 1991.

Fast-Fourier Transform

- High tension, low speed research line
- Tyvek material
- 4 sections
 - Unwind Unwind
 - S-wrap
 - Process
 - Rewind

DISTURBANCES

Unwind Bump Disturbance

Upstream Eccentric Idler Disturbance

Downstream Eccentric Idler Disturbance

Load Cell Control (No Dancer)

How Effective Is the Dancer?

How Effective Is the Dancer?

- Compare Unwind Bump with and without a dancer
- Lower frequency driver
- 83% reduction in 200FPM 1-per-rev frequency magnitude
- 82% at 400FPM

Conclusion

- Reviewed 'primitive elements' for modeling web handling lines
- Dancer disturbance rejection capability
 - 80% of 1-per-rev frequency magnitude for the eccentric idler removed compared to the magnitude without a dancer
 - 80% of 1-per-rev magnitude for the Unwind bump disturbance removed compared to not having a dancer
 - Compared results to simulations made with primitive elements

Questions?

Web Handling Research Center, Oklahoma State University