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Motivation

 Increase awareness of Dancer utility
Create a mathematical model of a physical web 

line to allow simulation
 Study disturbance rejection capability of a dancer



Primitive Elements

 The Span
Conservation 

of mass
Linearized

𝐿𝐿𝑛𝑛 𝑡𝑡
𝑑𝑑𝑡𝑡𝑛𝑛 𝑡𝑡
𝑑𝑑t

= EnAn 𝑣𝑣n+1 − 𝑣𝑣n − 𝑉𝑉n+1tn t + 𝑉𝑉n
EnAn

En−1An−1
tn−1 t

*K.-H. Shin, Distributed control of tension in multi-span web transport systems, Stillwater, OK: Ph.D, 
Oklahoma State University, 1991. 

*



Primitive Elements

 The Driven Roller
Torque Balance
Remove Motor constant and 

damping for idle roller 
Linearized

𝐽𝐽𝑛𝑛
𝑑𝑑𝑣𝑣𝑛𝑛
𝑑𝑑t = − 𝐵𝐵𝑓𝑓𝑛𝑛 + 𝐶𝐶𝑏𝑏𝑛𝑛 𝑣𝑣𝑛𝑛 + 𝑅𝑅𝑛𝑛2(𝑡𝑡𝑛𝑛−𝑡𝑡𝑛𝑛−1)

−𝑅𝑅𝑛𝑛𝐾𝐾𝑏𝑏𝑛𝑛𝑢𝑢𝑛𝑛 + RnM𝑛𝑛gensin 𝜔𝜔𝑛𝑛t + 𝜙𝜙𝑛𝑛0

*K.-H. Shin, Distributed control of tension in multi-span web transport systems, Stillwater, OK: Ph.D, 
Oklahoma State University, 1991. 

*

*



Primitive Elements

Pendulum Dancer
Torque Balance of 

dancer
Span tensions 

augmented with 
dancer movement

*K.-H. Shin, Distributed control of tension in multi-span web transport systems, Stillwater, OK: Ph.D, 
Oklahoma State University, 1991. 

𝑑𝑑𝛾𝛾𝑛𝑛
𝑑𝑑𝑑𝑑 = 𝛾̇𝛾

𝐽𝐽𝑝𝑝𝑝𝑝
𝑑𝑑𝛾̇𝛾
𝑑𝑑𝑑𝑑 = −𝐶𝐶𝑝𝑝𝑝𝑝𝛾̇𝛾 + 𝑡𝑡𝑞𝑞𝑞𝑞 − 𝑡𝑡𝑛𝑛−1𝑦𝑦𝑛𝑛−1 − 𝑡𝑡𝑛𝑛𝑦𝑦𝑛𝑛

𝐽𝐽𝑛𝑛
𝑑𝑑𝑣𝑣𝑛𝑛
𝑑𝑑t = − 𝐵𝐵𝑓𝑓𝑓𝑓 vn + 𝑅𝑅𝑛𝑛2 𝑡𝑡𝑛𝑛 − 𝑡𝑡𝑛𝑛−1

𝐿𝐿𝑛𝑛
𝑑𝑑𝑡𝑡𝑛𝑛(𝑡𝑡)
𝑑𝑑t

= EnAn 𝑣𝑣𝑛𝑛+1(t) − 𝑣𝑣n t + 𝑉𝑉𝑛𝑛
EnAn

En−1An−1
tn−1 t − 𝑉𝑉𝑛𝑛+1𝑡𝑡𝑛𝑛(t)

+ EnAn − 𝑡𝑡𝑛𝑛 𝐿𝐿𝑎𝑎𝑎𝑎+1𝛾̇𝛾n+1sin( 𝜃𝜃𝑖𝑖𝑖𝑖+1)

*



Fast-Fourier Transform

Time (s)

 Fits a large group 
of sinusoids to 
raw data 

Returns 
magnitude and 
frequency 

 Excel can do this



Euclid Web Line

High tension, low speed research line
 Tyvek material
 4 sections
Unwind 
S-wrap
Process
Rewind



DISTURBANCES



Unwind Bump Disturbance

 0.75in bump added
 0.91Hz for 200FPM
 1.82Hz for 400FPM



Upstream Eccentric Idler Disturbance

 0.1in eccentricity
 4.2Hz for 200FPM
 8.4Hz for 400FPM
 2.1Hz for 400FPM 

S-wrap roller



Downstream Eccentric Idler Disturbance

 0.1 in eccentricity 
 4.2Hz for 200FPM
 8.4Hz for 400FPM



Load Cell Control (No Dancer)

 Lock out the dancer
Unwind Bump 

disturbance (0.75in)
 0.91Hz for 200FPM
 1.82Hz for 400FPM



How Effective Is the Dancer?

Compare Idle 
eccentricity

Higher frequency 
driver

 83% reduction in 
200FPM 1-per-rev 
frequency 
magnitude

 82% at 400FPM



How Effective Is the Dancer?

Compare Unwind 
Bump with and 
without a dancer

 Lower frequency 
driver

 83% reduction in 
200FPM 1-per-rev 
frequency 
magnitude

 82% at 400FPM



Conclusion

Reviewed ‘primitive elements’ for modeling web 
handling lines

Dancer disturbance rejection capability
80% of 1-per-rev frequency magnitude for the 

eccentric idler removed compared to the magnitude 
without a dancer

80% of 1-per-rev magnitude for the Unwind bump 
disturbance removed compared to not having a 
dancer

Compared results to simulations made with primitive 
elements 
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