Electron Beam Curable Varnishes – Rapid Processing of Planarization Layers

Juliane Fichtner, Michaela Hagenkamp, Markus Noss, Steffen Günther

AIMCAL R2R Conference USA 2017 Naples, Florida, October 15 - 18, 2017

What is a Plane Surface?

Motivation – Applications of Planarization Layers

FEP Approaches for a Plane, Defect Free Surface

Electron beam (EB) curable varnishes

EB curable varnishes + Smoothing – Release web

page 4

Technical benefits:

- high production speed
- compact, robust equipment
- Iow temperature impact
- no photoinitiators needed
- no solvents in the varnish needed
- high conversion levels

Composition of EB Curable Varnishes

EB Curable Varnishes

- all used components are reactive
 → contain carbon-carbon double bonds
- oligomers and monomers influence:
 - reactivity
 - viscosity
 - flexibility/ hardness
 - chemical and weathering stability
 - scratch resistance

\rightarrow by variation of:

- resin chemistry (e.g. epoxy, urethane, polyester/-ether)
- molar mass
- functionality

EB Curable Varnishes – Film Formation

Varnish Layer Manufacturing

Characterization Methods

© Fraunhofer FEP

Characterization Methods

 \rightarrow variation of concentration of monomers/oligomers

Studied Varnishes – Start System

S_a: arithmetic average of the surface roughness

page 13

Studied Varnishes – Start System

Defect Characterization - AFM

12 % monomer

100 % monomer

- fraction of monomer $\uparrow \rightarrow R_a \uparrow$
 - molecular weight ↓ → more starting points for radical polymerization → more secondary reactions (e.g. cyclizations)

Defect Characterization - SEM

circular, polymeric defects in the range of 20 to 200 nm

page 16

© Fraunhofer FEP

Influence of Additives

Influence of Additives

- significant reducing of defect area by adding:
 - additives 3, 5 (polydimethylsiloxane)
 - additive 4 (acrylate copolymer)

Influence of Additives

additive	R _a [nm]	R _t [nm]	
additive 4	1,2	100	
additive 3	0,7	20	1
additive 5	0,7	6	f reduced defect heigh

page 20

 R_{a} arithmetic average of the roughness profile

© Fraunhofer FEP

Studied Varnishes – Component Screening

© Fraunhofer FEP

Fraction of Defect Area D_f - Pure Components

Fraction of Defect Area D_f – Varnishes

To get a plane surface with less defects:

- fraction of monomer
- molar mass 1
- content of oligomers in varnish 1
- add leveling additives 1

FEP Approaches for Plane, Defect Free Surfaces

Electron beam (EB) curable varnishes

EB curable varnishes + Smoothing – Release web

page 25

Smoothing Release Web - Scheme

- 1) substrate
- 2) wet varnish
- 3) smoothing-release web

 \rightarrow protects wet varnish of atmospheric dirt

- 4) linear Electron Beam system
- 5) EB curing area
- 6) Cured varnish film with smoothing-release web
 - \rightarrow protects cured varnish film of atmospheric dirt

Smoothing Release Webs – Varnish Surface

Characterization of varnish surface (after removement of release web):

- arithmetic average surface roughness (S_a)
 - comparative value (varnish): ~5 nm
- fraction of defect area (D_f)
 - comparative value (varnish): 0,04 ± 0,01 %

	Sa	D _f	
web type	of varnish layer		
commercially available release webs	9 nm - 140 nm	5% - 35%	
polymer webs	8 nm - 30 nm	8% - 24%	
metallic coated PET (AI)	~ 5 nm	0,2% - 0,4 %	
oxidic coated PET, PC, PEN	5 nm - 9 nm	0,05% - 12%	

Thank you for your interest !!

Europe funds Saxony. EFRE European Regional Development Fund Contact: Dipl.-Ing. Juliane Fichtner Fraunhofer FEP Winterbergstr. 28 01277 Dresden, Germany Tel: +49 (351) 2586 145 juliane.fichtner@fep.fraunhofer.de www.fep.fraunhofer.de

Essential results presented in this paper were obtained in a public project, funded by the Free State of Saxony. Funding reference: 3000651169

Smoothing Release Web - Requirements

requirements for smoothing-release webs:

Iow/no adhesion to the varnish

 \rightarrow surfaces with low surface energy

- smooth, defect free surface
- high electron beam stability \rightarrow multiple utilization

→ selected webs

- commercially available release webs for smooth surfaces (siliconized PET webs)
- polymer webs with low surface energy (e.g. fluoropolymers, polypropylene)
- coated polymer webs
 - metallic/oxidic

Smoothing Release Webs – Pure Polymer Web

Smoothing Release Webs – Oxide Coated Polymers

 \rightarrow surface quality of oxide layers depends on surface quality of the web

Smoothing Release Webs – Varnish Surface

- Iowest fraction of defect area
 by using oxide coated polymer webs
 - surface quality of oxide surface depending on substrate surface quality

