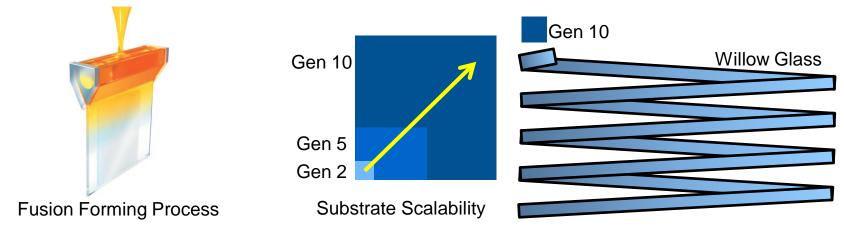
Flexible Glass Applications & Process Scaling

Sean Garner, Sue Lewis, Gary Merz, Alex Cuno, Ilia Nikulin

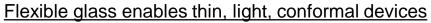
October 16, 2017

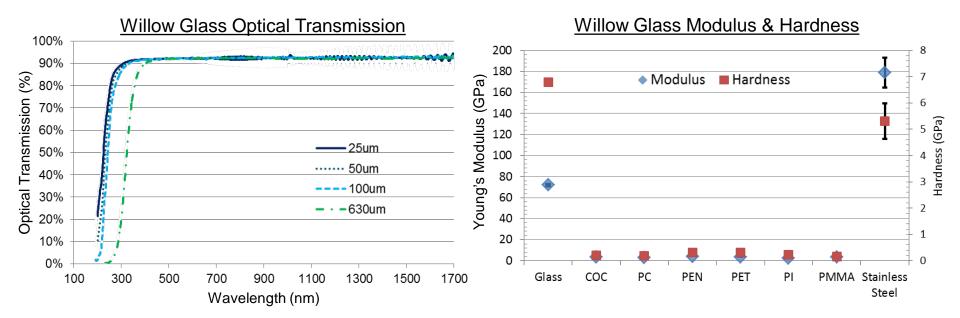

Outline

- Flexible Glass
- Applications
- Process Scaling
- Summary

Flexible Glass Enables Revolutionary Scaling of Processes Provides a high quality glass substrate compatible with R2R manufacturing

Continuous fusion forming produces a display-grade glass surface at scalable dimensions


Corning® Willow® Glass is compatible with both sheet (carrier) and R2R manufacturing


Production SpoolsThickness ≤ 200 μmWidth≤ 1.3 mLength≤ 300 m

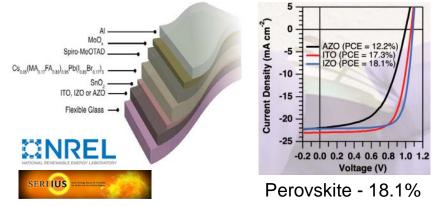
Glass Enables Device Process & Performance Optimization Flexible glass benefits arise from composition and forming process

- Flexible glass advantages include:
 - Optical quality
 - Surface quality
 - Thermal capability
 - Dimensional stability
 - Chemical compatibility
 - Hermeticity

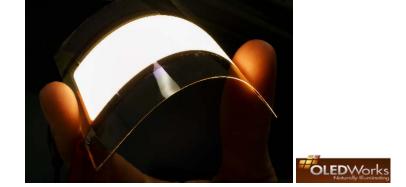
CORNING | Science & Technology Flexible Glass: Enabling Thin, Lightweight, and Flexible Electronics, Wiley-Scrivener, 2017.

Applications Value Different Sets of Flexible Glass Attributes Roll-to-roll or roll-to-sheet manufacturing is the common element

Laminated Flat and Curved Surfaces


Mechanical properties, large area

Photovoltaic


• Optical quality, hermeticity, surface quality

B. Dou, et al., "High-Performance Flexible Perovskite Solar Cells on Ultrathin Glass: Implications of the TCO" *J. Phys. Chem. Lett.*, v.8, pp.4960–4966, 2017. CORNING | Science & Technology

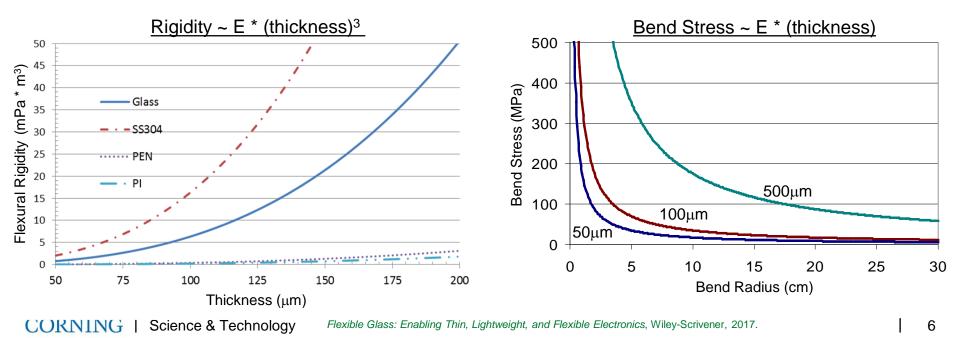
OLED Lighting

Hermeticity, flexibility, optical quality

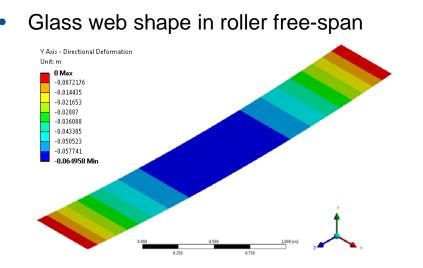
L. Zhang, at al., "Flexible Glass Substrates for Printed Electronic Applications," IWFPE 2016.

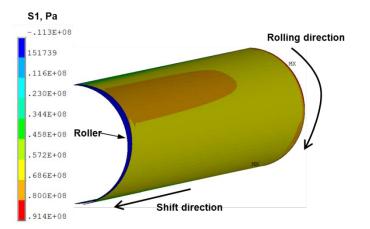
Transparent Antenna

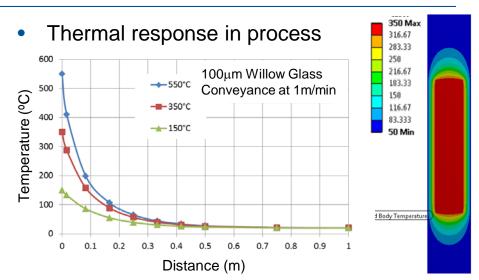
• Dimensional stability, optical quality


M. Poliks, et al., "Transparent Antennas for Wireless Systems based on Patterned Indium Tin Oxide and Flexible Glass," ECTC 2017.

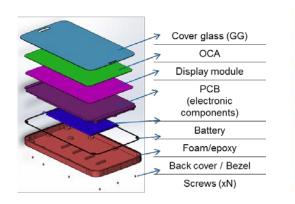
Glass R2R Reliability Achieved by Controlling Stress & Defects Optimization based on specific requirements of process and device design

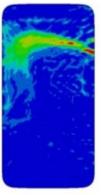

- Roller systems efficiently convey flexible glass web
- Equipment designs affect glass stress
 - Conveyance path, rollers, steering, tension,...
- Cutting processes and controlling contact address defects
 - Edges slitting and cutting optimization
 - Surfaces edge tab / laminate / interleaf



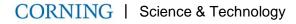


Modeling Enables Optimization of Substrate, Process, Device System-level decisions incorporate influence of flexible glass properties




Glass web stress in conveyance deviations

Packaged device stress during impact



Application Reliability Requires System-Level Optimization Individual materials and methods have combined effect

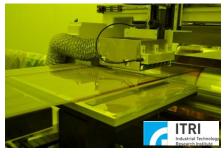
Ball Drop Example

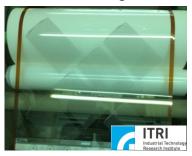
- Laminated Willow Glass
- 0.5kg ball
- 1.3m drop

Willow Glass 100µm Stainless steel 16 gauge

Cyclic Bend Example

- Cyclic 4-point bend testing ~27mm radius
- 25,000 cycle testing
- In situ van der Pauw measurement
- Evaluated TCO-coated substrates
 - Flexible glass FTO, ITO, AZO, CTO


The Flexible Glass R2R Ecosystem is Growing Processes scaling: proof-of-concept \rightarrow pilot line \rightarrow manufacturing

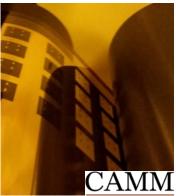

Lamination

Laser Patterning

Printing

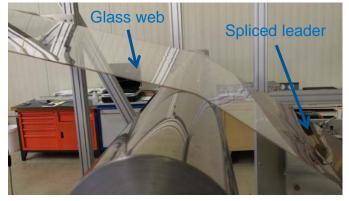
Glass web conveyance is central element

Vacuum Deposition


CORNING | Science & Technology

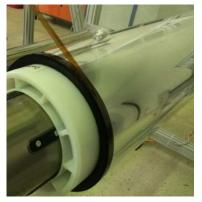
Solution Coating

Photolithography


Conveyance – Handling Glass Web at Production Width Demonstrated 1m-width glass conveyance in process configuration

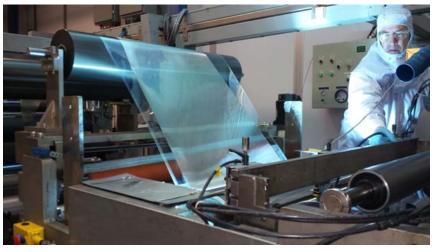
- Repeated conveyance cycles with no interleaf
- Stable web shape
- Good wind quality with no web steering

Spool Unwind With Interleaf



Roller Conveyance

Glass web width	1 m	
Glass web length	50 m	
Conveyance speed	1.5 m/min	
Path length	>10 m	
Roller wrap angles	20 - 130 deg	


Spool Rewind No Interleaf

Microreplication – Wide, Dimensionally Stable Glass Web Patterned example structures on 750mm-width glass web

Willow Glass Exiting Process Nip

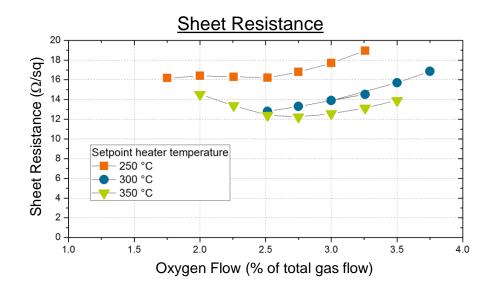
Resin Coating & Replication

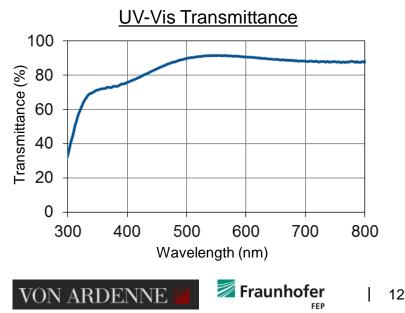
- Created single and double-side patterns
- Glass width 750 mm
- Glass length 40 m

Prism (cross-section)

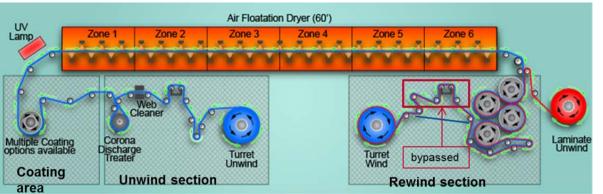
Diffuser (cross-section)

Vacuum Deposition – High Temperature, Production Length Deposited ITO at 350°C on 100m-length glass web


- Repeated conveyance cycles
- Stable web shape
- Good wind quality with no web steering
- Deposited ITO for OLED lighting
 - 350°C process temperature
 - 12 Ω/sq, 170 µOhmcm

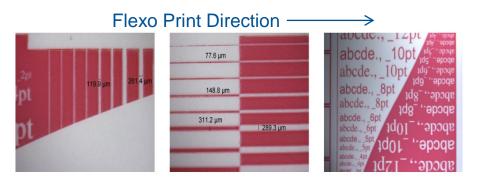

CORNING | Science & Technology

Width - 330 mm Length - 100 m FOSA Labx 330 Glass


VON ARDENNE

Flexographic Printing – High Speed, Long Complex Web Path Patterning up to 20 m/min in system with 90m-length web path

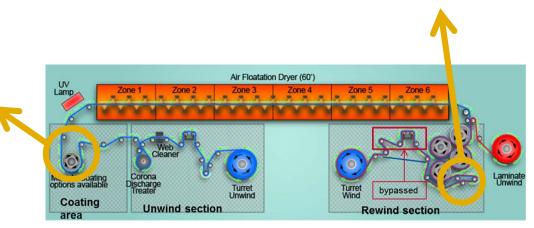
R2R Printing and Coating System


Flexo Printing

Slot Die Coating

- Complex 90m-length web path
 - >30 rollers (2 dancers)
- Printing at 15-20 m/min
 - <80µm features (non-optimized)
 - Ink drying limited speed
- Slot die coating at 15 m/min
 - Ink drying limited speed
- Conveyance at 30 m/min
- Glass web
 - Width 330 mm
 - Length >40 m

CORNING | Science & Technology


Flexographic Printing at 15 m/min

Flexo Printing

Conveyance

Summary

- Flexible glass offers advantages for device designs and processes
 - Includes optical & surface quality, dimensional & thermal stability, hermeticity
- Mechanical reliability of glass is understood
 - Form with high initial strength & minimize defect creation
 - Manage stresses with appropriate handling & conveyance
 - Optimized solutions are application specific
- A disruptive flexible glass ecosystem is emerging
 - Equipment specifically optimized for glass processing

Highlighted Ecosystem Processes	R2R Glass Web Demonstrations	
Microreplication	Web width	1 m
Vacuum deposition	Web length	100 m
Flexographic printing & coating	Web speed (equipment / ink limit)	20 m/min (flexo) 30 m/min (convey)