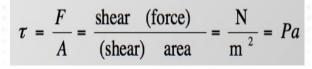

PROCESS KNOWLEDGE · PRECISION · PERFORMANCE

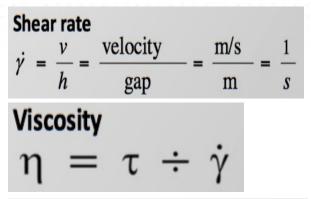
THE EFFECTS OF VISCOELASTIC BEHAVIOR ON COATING

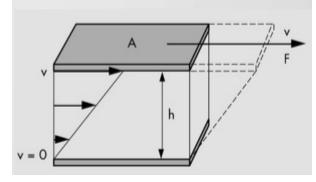
OFFICE 715.544.7568 MOBILE 715.456.9545 2322 Alpine Road Suite 4 Eau Claire, WI 54703

VISCOELASTICITY

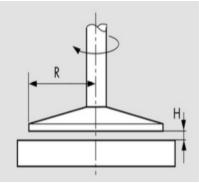
- Viscosity (shear rate versus viscosity)
- Elasticity (stress and velocity interaction)





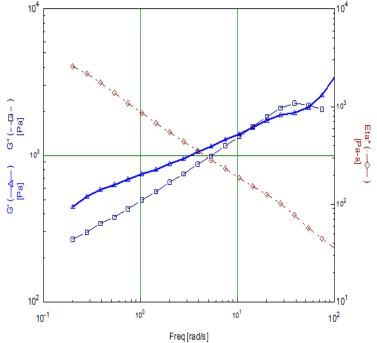

VISCOSITY

- (complex) Rheology = a curve, not a point
- Storage and Loss Modulus (G' & G") = spring constant (PE & KE)
- Molecular Weight (distribution)



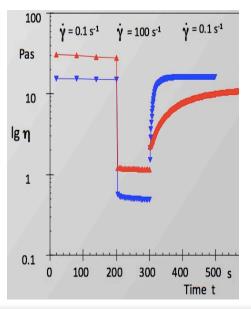
VISCOSITY

- (MORE complex) Rheology = hysteresis
- Stress-relaxation
 - Snap back (lack of self-leveling)
 - Expansions and Contractions (manifold design)
- Film split



VISCOSITY

• $\tan \delta = G''/G'$ (balance of viscoelastic behavior)



The science of slot dies

ELASTICITY

- No modulus dependence on time
- Elongational testing (rough or elegant)

RHEOLOGY & COATING

• Reynolds $Re = \rho VL/\mu$

(inertial forces) / (net viscous force)

• Capillary $Ca = \mu V/\sigma$

(viscosity induced pressure gradient) /
(capillary pressure)

- Stokes $St = \rho g L^2 / \mu V$ (gravity force) / (net viscous force)
- Elasticity $EI = \mu V/EL$ (viscous stress) / (elastic stress in boundary)
- Deborah De = $\lambda V/L$ (viscous stress) (elastic stress)

- Recognized phenomenon
- Defect analysis
- Crossroads of liquid coating and polymer extrusion

• Viscoelasticity dominates, then time dependent stress

$$E_r(t) = \frac{\sigma(t)}{\varepsilon_0}$$

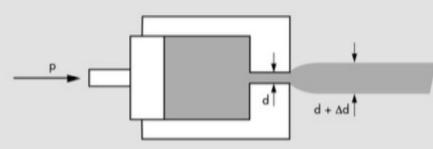
 $E_r(t) = stress relaxation modulus$

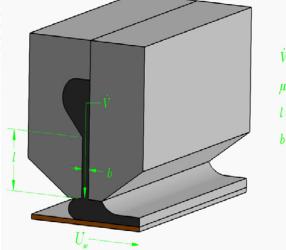
 $\sigma(t) = stress$

 $\varepsilon_0 = applied \ strain$

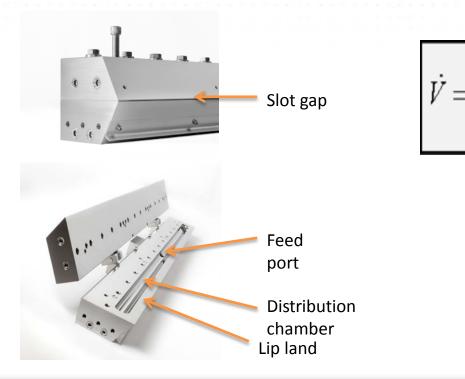
• Time is greater at lower temperatures

- Film split
 - Misting
 - Roll spatter (high MW = more splatter)


$$\frac{\Delta P}{\Delta X} = 12\mu \left(\frac{\frac{(U_1 + U_2)}{2}}{H^2} - \frac{Q}{H^3}\right)$$


P = pressure X = distance μ = viscosity U₁ & U₂ = roll speeds Q = volumetric flow rate H = separation between roll surfaces

- Pre-metered flow control
 - Forced flow (no self-leveling)
 - Die swell (edge bead)
 - Neck-in (speed effects)
 - Retraction (wrinkling, curl or voids)


 \dot{V} = FLOW RATE μ = VISCOSITY l = SLOT LENGTH b = SLOT WIDTH

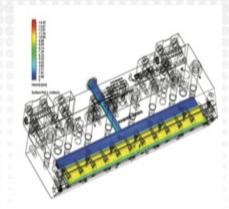
Pre-metered flow control

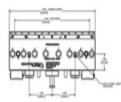
The science of slot dies

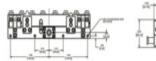
12*µ*L

2D non-Newtonian flow models (internal flow)

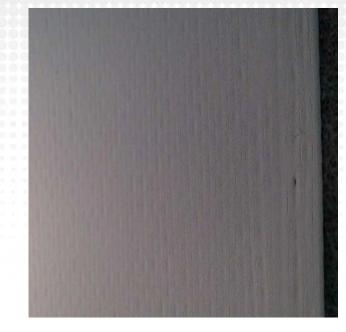
• Casson (short time model) $\sqrt{\tau_{xy}} = \sqrt{\tau_0} + \sqrt{\eta}\sqrt{\gamma_{xy}}$


 $\tau_{xy} = shear \ stress$ $\tau_0 = apparent yield stress$ $\eta = viscosity$ $\gamma_{xy} = rate of strain$ Maxwell (long time model) $\tau_{xy} + \frac{\eta}{c} \frac{d\tau_{xy}}{dt} = -\eta \gamma_{xy}$

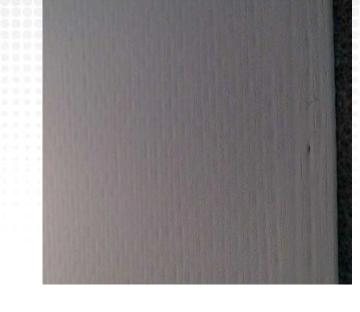

G = elastic shear modulus



- 3D Finite Element Analysis (defined boundary conditions)
 - Stress Relaxation
 - Time-Temperature and Boltzmann
 Superposition principles
 - Creep (long time frames)



Defects


- Coating while stressed (ribbing, neck-in and edge bead/die swell)
- Curing while stressed (wrinkle, curl and voids)

- Solutions
 - Ribbing = positional adjustment
 - Edge bead = slot to substrate
 gap
 - Neck-in = speed related
 - Wrinkle/Curl = reduce stress at coating or during curing
 Voids = limit of process

SUMMARY

- Viscoelasticy is complex test appropriately
- Reduce stress to improve coating
- Implement mathematical understanding to coating process development
- Coating window is fundamentally reduced because of viscoelastic behavior

