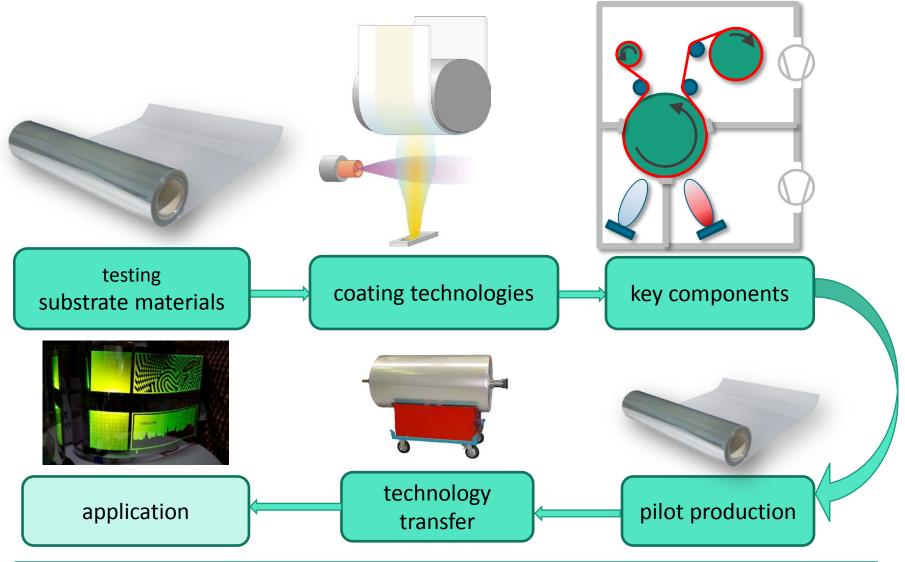
Applied Research for Vacuum Web Coating: What is Coming Next?

Matthias Fahland, John Fahlteich, Steffen Günther, Manuela Junghähnel, Claus Luber, <u>Nicolas Schiller</u>, Cindy Steiner, Steffen Straach, Michiel Top


AIMCAL R2R Conference USA 2017 Naples, Florida, October 15 - 18, 2017

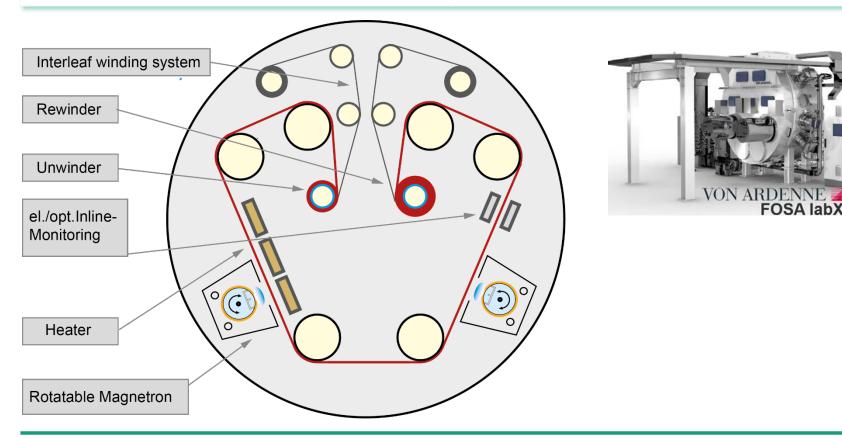
presenter's perspective *R&D services for the industry and flexible products*

Service along the R&D chain for flexible products

Hot R&D topics

- ultra-thin flexible glass
- high-rate PECVD
- advanced packaging films
- encapsulation of flexible electronics
- Flexible materials for batteries
- functional films for buildings and outdoor use

Ultra-thin flexible glass


product, application	ultra-thin flexible glass for displays, wearables, sensors, batteries
state of the art	increasing availability of flexible glass
R&D need	surface functions
approach, solution	roll-to-roll and sheet-to-sheet vacuum coating technologies
latest R&D results at FEP	 installation of a vacuum pilot roll coater (ARDENNE GmbH) roll-to-roll coating technology development: magnetron sputtering (e.g. ITO) Flash lamp annealing (FLA)

Pilot roll-to-roll coater FOSA labX 330 glass

- Flexible glass, polymer film, metal foil
- up to 330 mm deposition width
- Substrate temperature up to 350 °C

- up to 4 coating zones
- Dual Anode Sputtering
- Front-side touchless

VON ARDENNE 🚄

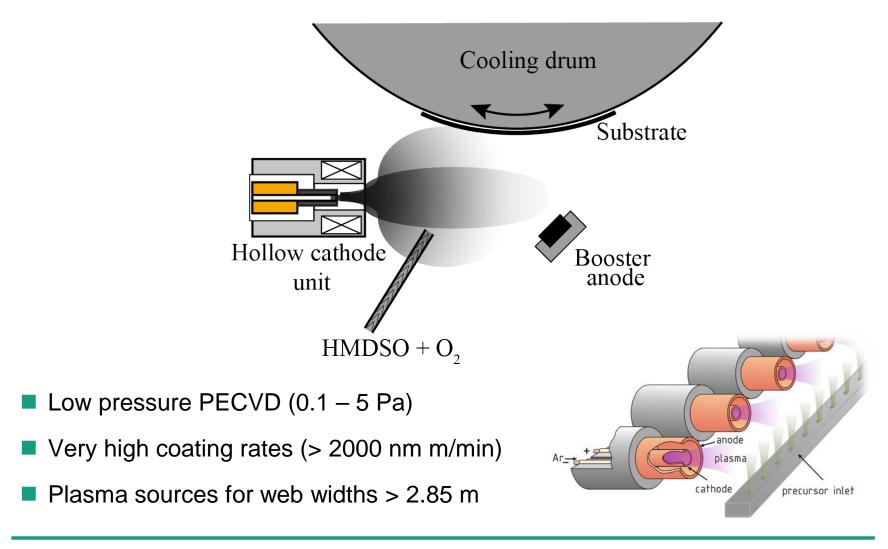

Ultra-thin flexible glass

Project KONFEKT: R2R Coating on Flexible Glass

Objective	 Development of adapted coating equipment Application development Establishing cooperation with glass makers and lamination facilities
Technology	 Sputtering & heating Sputtering and lamination processes

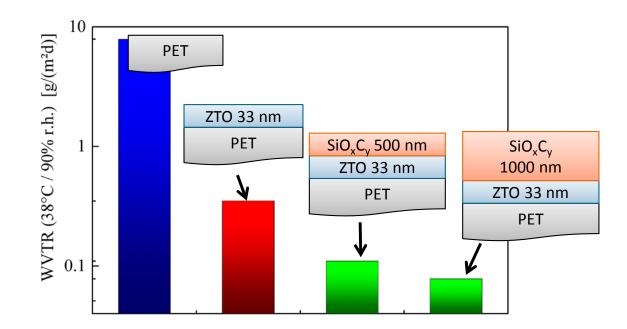
project funded by BMBF, contract Nr. 13N13818

Bundesministerium für Bildung und Forschung



High rate PECVD process

product, application	protective or adhesion promoting layers for various applications
R&D need	increase of productivitytechnology tayloring for specific applications
approach, solution	arcPECVD: high-rate PECVD process
latest R&D results at FEP	 protective layer on barrier film adhesion promoting layer anti-fingerprint color coatings



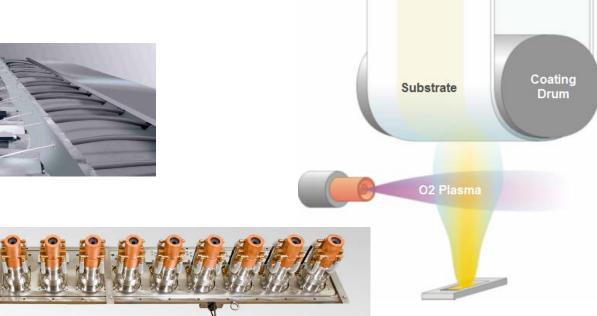
High rate PECVD: arcPECVD

Protective coating on a barrier layer by arcPECVD

- Roll-to-roll in-line deposition of both barrier layer and protective layer: in-line combination of sputtering and arcPECVD
- protective layer provides significant protection of barrier layer

Advanced packaging films

product, application	Transparent barrier films for packaging	
state of the art	increasing need for transparent barrier filmsAlOx technology available	
R&D need	 advanced product quality (barrier, convertability) wide range of polymer films (including biopolymers) retortable packaging 	
approach, solution	HAD-AIOx technology: Plasma-supported reactive evaporation of AI from boats	
latest results at FEP	 several industrial installations together with Applied Materials WEB Coating GmbH advanced barrier performance on a wide reange of polymer films 	



HAD-AIOx technology (HAD: Hollow cathode Activated Deposition)

Plasma assisted AlO_x evaporation

- High density oxygen plasma expands into evaporated Al plume
- Molecular oxygen strongly dissociated & incorporated at growth surface
- High degree of control of energetic particle flux to growth surface significantly expanding process window

Barrier performance: comparison with conventional AlOx technology

Substrate	Uncoated WVTR	Standard AlO _x WVTR	Plasma Assisted AlO _x WVTR	Uncoated OTR	Standard AlO _x OTR	Plasma Assisted AlO _x OTR
ΡΕΤ (12 μm)	40-50	≤ 0.7	≤ 0.35	100-140	≤ 1.6	≤ 0.8
BOPP (17 µm)	4-7	≤ 7	≤ 0.30	2000-2500	≤ 50	≤ 35

WVTR: Water Vapor transmission rate, measured in g(m² d) at 38°C, 90 % r. h. OTR: Oxygen transmission rate, measured in cm³/(m² bar day) at 23°C, 0 % r. h.

barrier values may vary depending on substrate and process conditions

Optical transmission ≥ 98% (measured inline during coating process)

Source: Neil Morrison, Applied Materials WEB Coating GmbH Presentation at AMI Coral Springs, Florida, USA, 2017

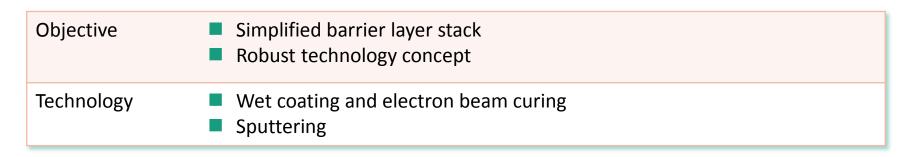
web speed 8 m/s

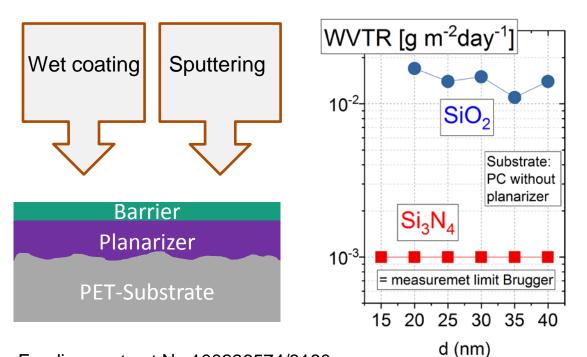
Barrier performance for "non-conventional" substrates

Polymer film type thickness		OTR [cm³/m² × d × bar] (23°C, 0 % r. h.)	WVTR [g/m² × d] (38°C, 90 % r. h.)	
PLA	20 µm	25	25	
СРР	20 µm	50	0.5	
PE	20 µm	40	0.9	

barrier values may vary depending on substrate and process conditions

- Optical transmission $\geq 98\%$
- web speed 8 m/s




High barrier films for encapsulation of flexible electronics

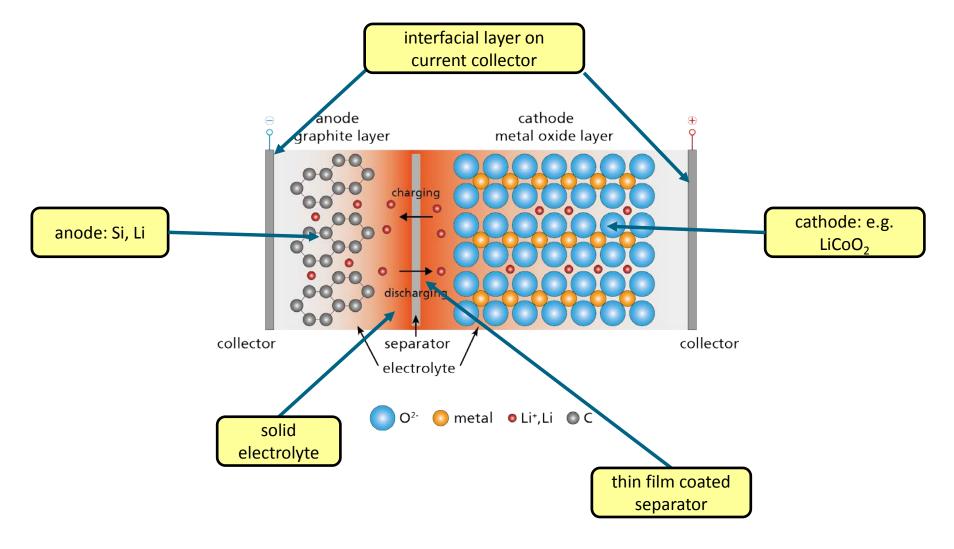
product, application	transparent high barrier films for encapsulation of flexible electronics	
state of the art	 increasing number of flexible electronic products (like flexible organic solar cells) increasing need for encapsulation 	
R&D need	 barrier, optical performance, low defects rate reduction of cost production equipment 	
approach, solution	 systematic investigation of sputtering process development of substrate smoothing layer based on electron beam curable coatings 	
latest R&D results at FEP	 reduction of defect rate in sputtering processes optimized winding procedure optimization of layer composition 	

Project OPTIPERM: Encapsulation films for flexible electronics

Project partners

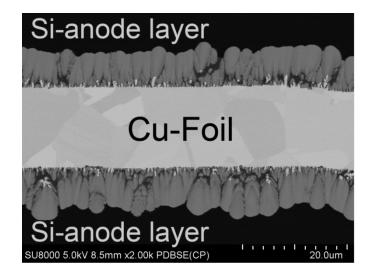
- VON ARDENNE
- 3D Micromac
- GfE Fremat
- IOT
- Vision optics

Funding contract Nr. 100236574/3160



Flexible materials for batteries

product, application	future batteries with improved energy density	
R&D need	cost effecient technologies for thin functionla layers	
approach, solution	vacuum roll-to-roll technologies	
latest R&D results at FEP	 Si anode layers on copper foils for Lithium-Sulfur batteries protective layers on current collectors for Lithium Metal Polymer batteries plasma supported coating technologies for solid state electrolytes 	

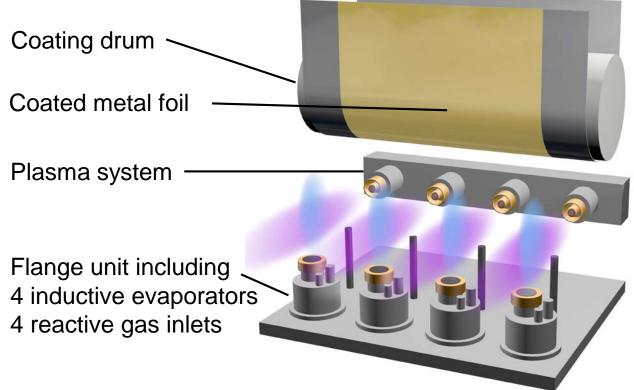

Vacuum deposited thin films: potentials and R&D needs



Silicon anodes for Li-S-Batteries

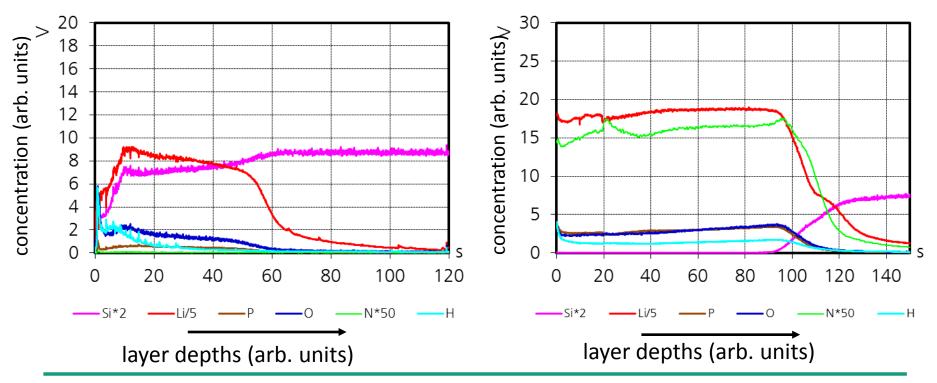
Copper foil with silicon anode layers – SEM picture of an ion beam prepared cross-section

Capacity vs. charge cycles after additional structuring of Si anode layers and testing in test cells



Roll-to-roll process for high-rate deposition of solid electrolyte layers on metal foils

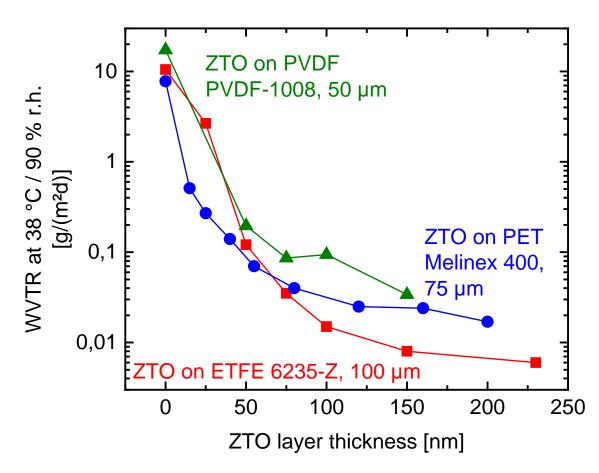
Schematic layout of an arrangement for depositing a LiPON solid electrolyte layer



High-rate deposition of solid electrolyte:Influence of the plasma activation

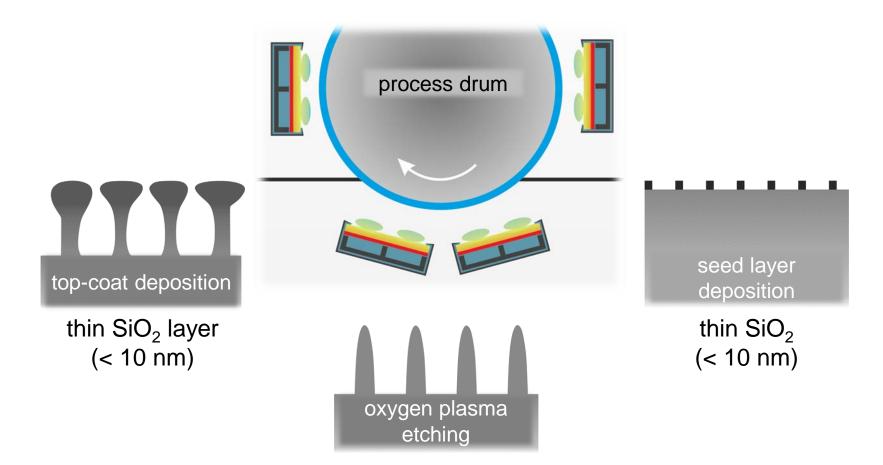
Without plasma activation No nitrogen integration

With plasma activation high nitrogen integration



Functional films for architecture and outdoor use

product, application	functional films for outdoor use likeflexible solar cellsintegration in membrane roofs and façades	
R&D need	vacuum PVD and PECVD on outdoor-stable substrates	
approach, solution	optimization of vacuum coating processes to special properties of fluoropolymer substrates	
latest R&D results at FEP	 sputtered permeation barriers on ETFE with same performance as on PET outdoor-stable anti-reflective surface treatment 	


Permeation Barrier Performance on Fluoropolymers

reactive dual magnetron sputtering zinc-tin-oxide (ZTO)

Reactive Plasma Etching of ETFE surfaces to promote adhesion thin layers

Summary

R&D for vacuum web coating

- ultra-thin flexible glass
- advanced packaging films
- encapsulation of flexible electronics
- flexible materials for batteries
- functional films for buildings and outdoor use
- high-rate PECVD

I thank you for your attention

