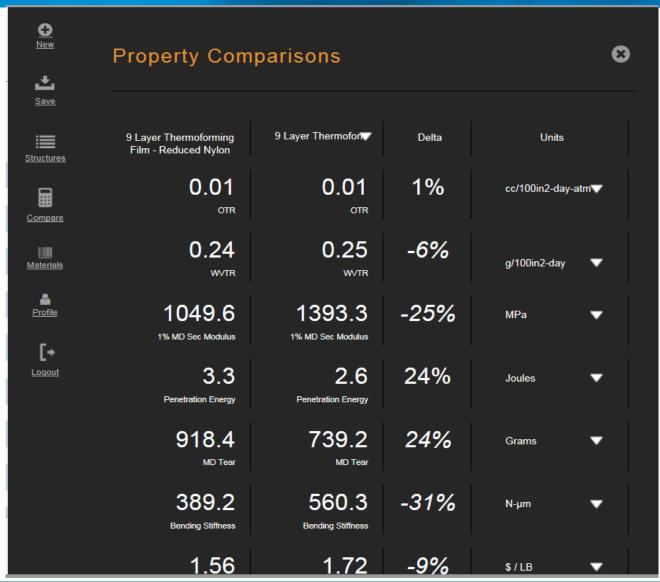
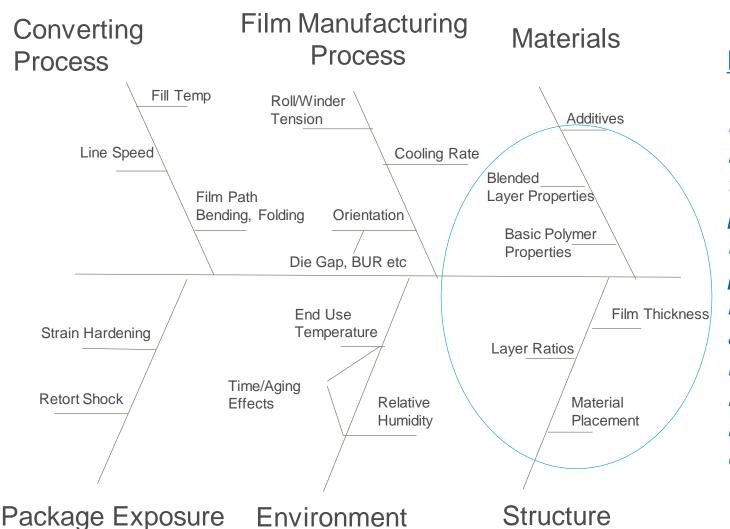
Improving the Accuracy and Reliability of Models Used to Predict Multilayer Packaging Film Properties



DAN WARD SPE International Polyolefins Conference February 28, 2017

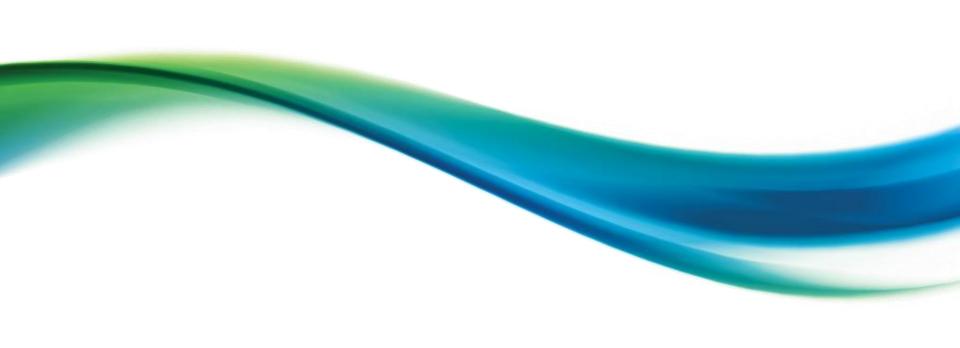
BonfireSM Multilayer Property Predictor Structure Input Screen

Bonfire[™] Property Estimates and Structure Comparisons



Model Starting Assumptions and Calculations

- 1. Most material physical properties are linear and proportional to gauge
- 2. Properties of individual layers are additive. (No layer interactions)
- 3. The properties of blended layers average out proportionally to blend ratios by weight.
- 4. Film processing effects and package end-use conditions are "standard" or constant and not considered initially.


STRATEGY: Start with a flexible modeling platform that can easily incorporate new findings, properties and relationships.

Factors Affecting Final Film Properties

END GOAL:

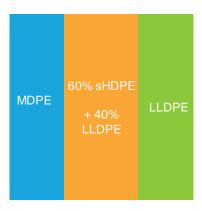
Develop an integrated model that accurately predicts a broad range of film properties from basic relationships and accounts for important interactions, manufacturing and end use conditions

NOVA Chemicals | Polyethylene

Case Study #1: Blend Effects

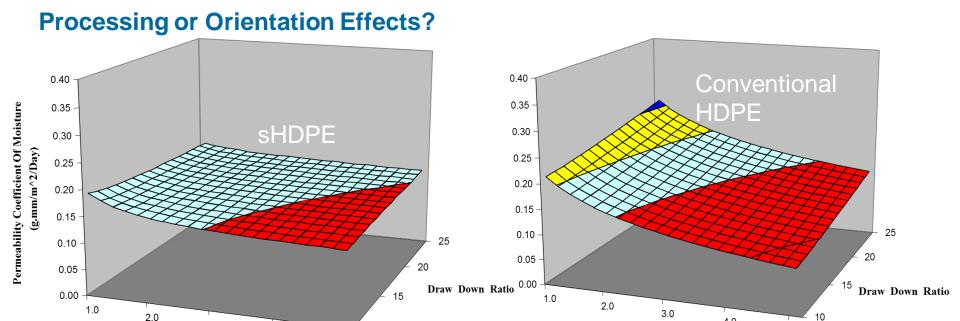
Estimating Permeability in Coex Films with Blended HDPE Layers

3-Layer Coex film for Cereal Liners and Dry Food Packaging


Traditional Structure

Test Structure #1

Test Structure #2



	Traditional Structure		Test St	ructure 1	Test Structure 2 (modified structure)		
Property	Actual Value	Predicted Value	Actual Value	Predicted Value	Actual Value	Predicted Value	
Gauge (mils)	2.2	-	2.0	-	1.9	-	
Cost (cents/MSI)		5.58		5.86		5.01	
WVTR (g/100in2-day)	0.18	0.19	0.12	0.26	0.15	0.45	
	6 % Difference		> 100% Difference		300% Difference		

Potential Sources of WVTR Prediction Errors in Test Structures with sHDPE Layers

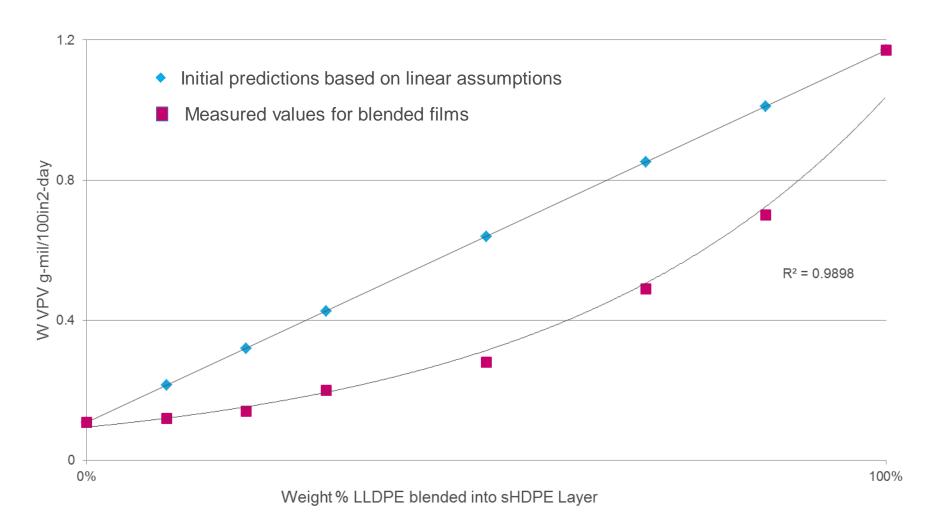
Aubee, N. and Lam, P., Influence of Blown Film Process Conditions on Moisture Barrier Properties of HDPE TAPPI PLACE CONFERENCE (2006)

3.0

Process Time (s)

4 0

Effects of other layers? Layer Interactions or surface effects etc.


Blend effects? Weighted ratio assumption is inaccurate for sHDPE + LL blends.

40

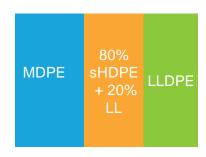
Process Time (s)

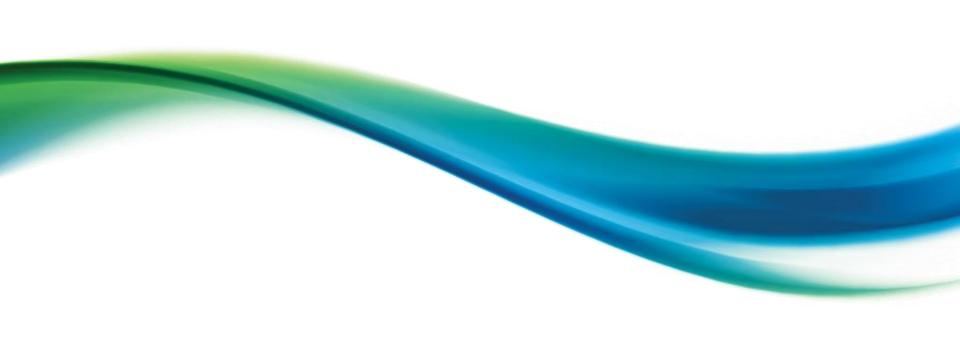
5.0

Predicted and Actual Water Vapor Permeation Values of sHDPE Blends with LLDPE

Blend data provided by Norman Aubee, NOVA CHEMCIALS CORPORATION

Improved Permeability Estimations in sHDPE Structures

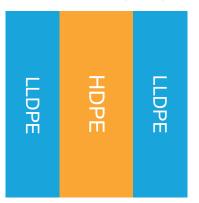

Incorporate Conditional Formatting (logic gate) into calculation


=IF (Component 1="sHDPE"& Component 2= LLDPE),use equation 2 =IF NOT, use equation 1

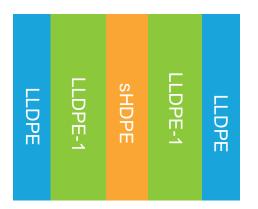
		Test Structure 1			Test Structure 2	
Property	Actual Value	Initial Predicted Value	Revised Predicted Value	Actual Value	Initial Predicted Value	Revised Predicted Value
WVTR	0.12	0.26	0.13	0.15	0.45	0.16
	,	5% Difference		7	% Difference	

Optimized Structure

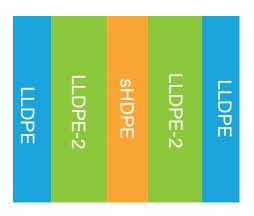
- ✓ Lowest MSI cost
- ✓ Meets barrier specs
- √ Good balance of physical properties


NOVA Chemicals | Polyethylene

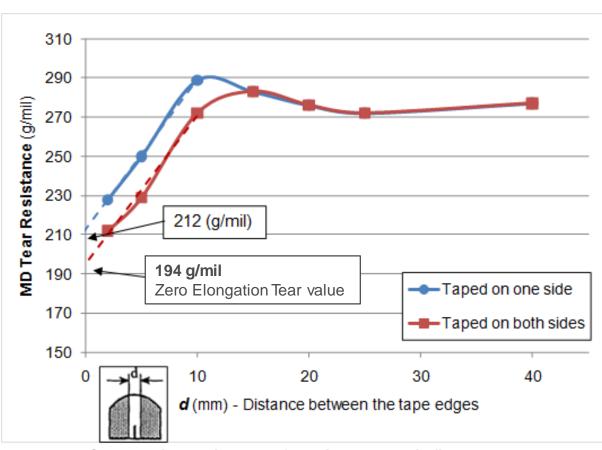
Case Study #2: Layer Interaction Effects


Loss of LLDPE Tear Strength in HDPE Coex Structures

Coex Sealant Web for Frozen Food Packaging


3 Layer Control 3 mil total gauge

5 Layer Test Structure # 1 2.7 mil



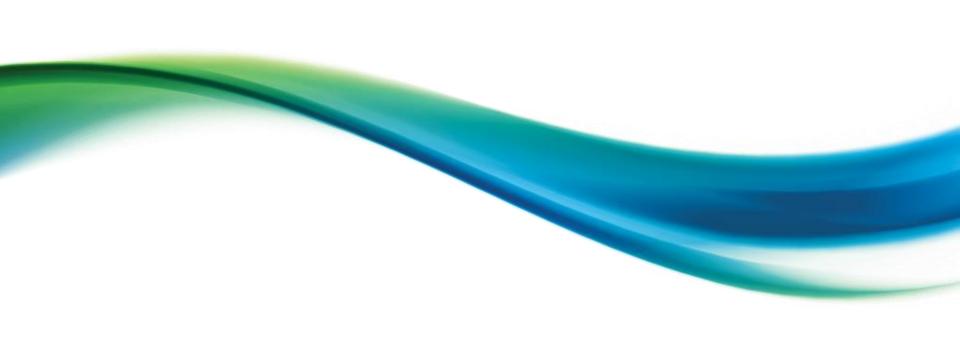
5 Layer Test Structure # 2 2.7 mil

	Control Structure		Test Structure 1		Test Structure 2		
Property	Actual Value	Predicted Value	Actual Value	Predicted Value	Actual Value	Predicted Value	
Cost (cents/MSI)		7.80		6.83		7.06	
O ₂ Barrier (cc/100in2-day-atm)	85	81	84	82	85	83	
MD Tear Strength (grams)	250	550	136	476	177	625	
	>100% Difference		~300% Difference				
					350% Difference		

Restricted Elongation Affects the Tear of LLDPE Layers and Structure

REFERENCE: Tearing resistance of multi-layer plastic films R.-Y. WU 1, L,D. McCARTHY 1 and Z.H. STACHURSK *International Journal of Fracture* 68:141-150, 1994.

Improving Tear Estimations in LLDPE/HDPE Coextrusions


Determine "zero-elongation" tear values for LLDPE layers Incorporate Conditional Formatting Into Calculation

- = IF (Layer X = HDPE & Layer Y = LLDPE), use zero elongation tear
- = IF NOT, use standard tear

		Test Structure 1			Test Structure 2		
Property	Actual Value	Initial Predicted Value	Revised Predicted Value	Actual Value	Initial Predicted Value	Revised Predicted Value	
MD Tear	136	550	152	167	625	185	
		12% Differenc		17% Difference	ce		

Optimized Structure

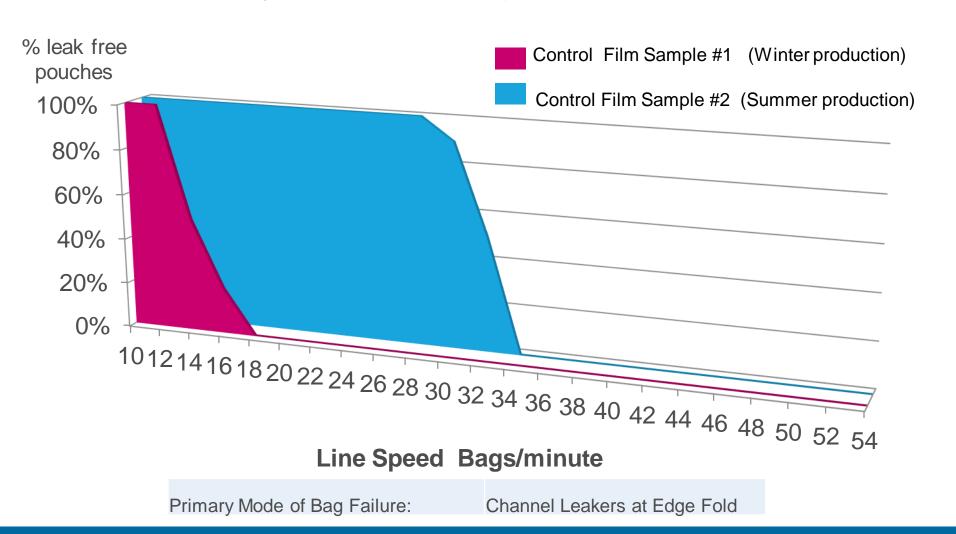
- ✓ Lowest MSI cost
- ✓ Meets barrier specs
- √ Good balance of physical properties

NOVA Chemicals | Polyethylene

Case Study #3: Environmental Effects:

Relative Humidity Effects on Properties of Polyamide Coex Films

Test Film for Liquid Packaging Application


9-layer Coextruded Film Structure

Layer	Α	В	С	D	Е	F	G	н	1
Layer ratio	11	11	11	11	12	11	11	11	11
Material	Sealant	sLL	sLL	sLL + 20 % tie	Nylon	sLL + 20 % tie	sLL	sLL + 20 % tie	Nylon
Layer Designation	Seal			Tie layer	Core	Tie layer		Tie layer	Skin

- 89.9 um film gauge, equal layer ratios
- Blown film, 160 mm Brampton die, 113 kg/hour production rate
- Nylon core and skin layers = Nylon 6/6,6
- Tie concentrate = DuPont BYNEL® 41E710
- sLL interior layers = NOVA Chemicals SURPASS® FPs016 resin

Pouch Pass Rate for Coex Films vs. Line Speed

9-Layer Coex Pouch Samples Sealed at 135 °C

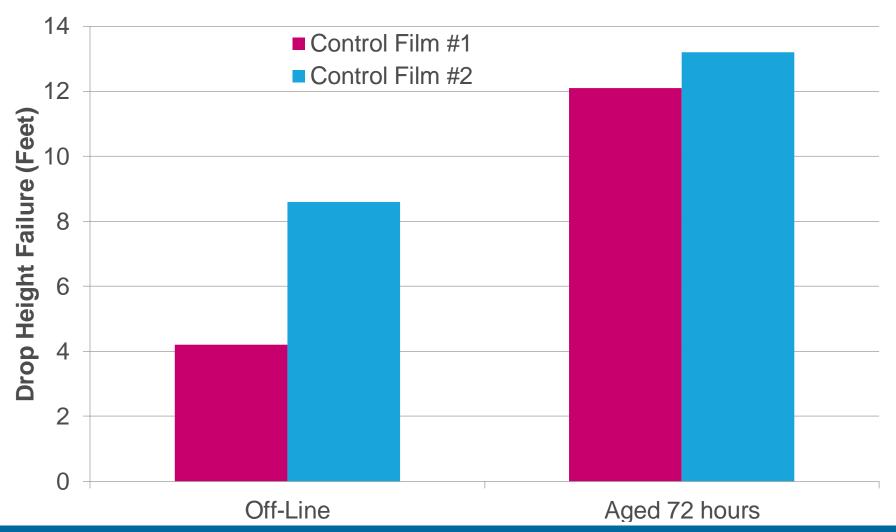
Effect of Relative Humidity on Physical Properties of Polyamide Coex Films

Key Difference:

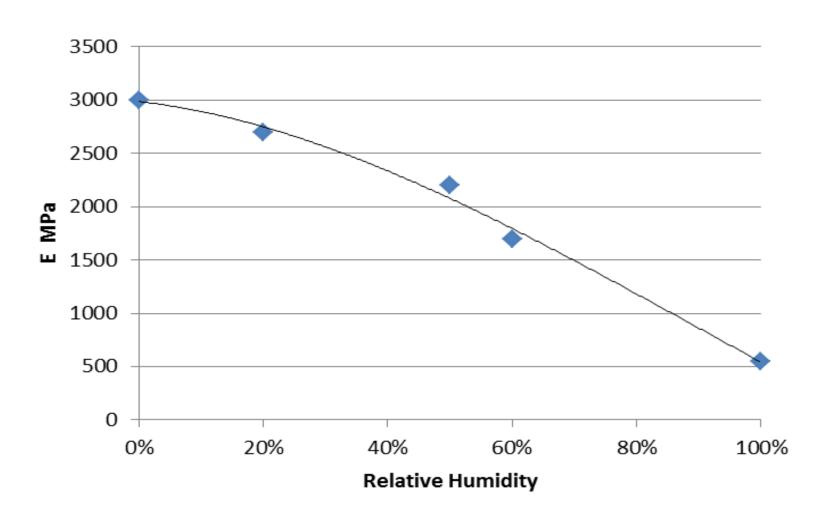
Control Film #1 was stored at tested under low ambient RH conditions

Mean (Winter) Storage Relative Humidity = 55%

Control Film #2 was stored and tested under high ambient RH conditions

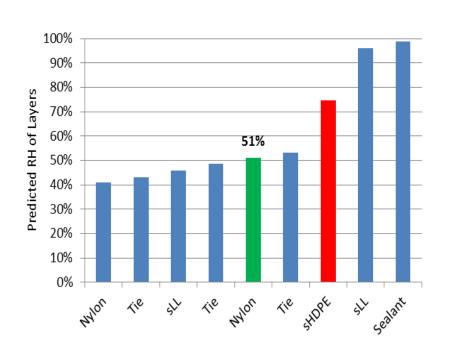

Mean (Summer) Storage Relative Humidity = 74%

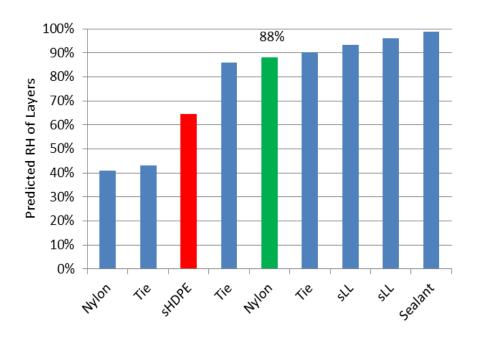
NEW CONTROL TEST FILM - IDENTICAL ROLLS STORED IN CONTROLLED RH CHAMBER FOR 72 HOURS BEFORE TESTING


Test	Units	Film Conditioned at 30% RH	Film Conditioned at 50% RH	Difference
Impact Energy	Ft-Lb	1.17	1.93	65%
Secant Modulus MD 1%	MPa	730	304	-58%
Secant Modulus TD 1%	MPa	669	332	-50%
Film Tensile at Yield MD	MPa	28	22.5	-20%
Film Elongation at Yield MD	%	6	9	50%

Drop-Tower Failure Height for VFFS Water Filled Pouches Made with PA Coex Films

Pouches converted at 10 Bags/minute


Polyamide 6, 6-6 Secant Modulus vs. RH 1 mil blown film



Predicted RH of Coex Layers 100% RH inside package, 40% RH outside

Test Film 1 – HDPE in interior coex layer

Test Film 2 – HDPE in exterior coex layer

Predicted Film Modulus = 688 MPa Predicted Film OTR = 2.97 cc/100in2-day atm

Predicted Film Modulus = 610 MPa Predicted Film OTR = 3.63

Properties of Films Used in Water-Filled Pouches

Testing completed on water-filled VFFS pouches aged for 72 hours Inside RH = 100%, Outside RH @ 40% RH

Structure	Film	2% MD Secant	Oxygen Permeability	Drop height failure – F50 (feet)		
Structure	Puncture (J/mm)	Modulus (MPa)	(cc/100in ² -day- atm)	Off-line	Aged	
Control (no HDPE) PA/tie/LLDPE//PA/tie/LLDPE/seal	57	450	4.2	9.4	18.3	
Test Film 1 PA/tie/LLDPE/tie/PA/tie/sHDPE/seal	48	684	3.37	10.7	13.0	
Test Film 2 PA/tie/sHDPE/tie/PA/tie/LLDPE/seal	62	634	3.62	10.0	9.2	

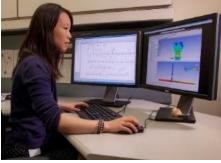
Stiffness and OTR Predictions were accurate after incorporating RH correction in the model

Conclusions and Recommendations

- Many multilayer film properties are difficult to predict or model. They are affected by material and layer interactions, environmental, processing and many other factors that should be accounted for.
- However, the accuracy of basic models can be improved. Models should be built in a modular, flexible platform that allows designers to easily incorporate new discoveries, relationships and materials.
- Predictive models should not be used as a substitute for multilayer film trials, only as a general tool for identifying materials, optimizing layer and blend ratios, and predicting general trends.

Come Work With Us!

C C C



Shrink Tunnel

Physical Testing Lab

Horizontal FFS

Virtual Design Tools

NEUSCUA NOUSCIA

Vertical FFS

Adhesive Laminator

9 Layer Blown Film Line

Thermoformer

novachemicals.com

© 2016 NOVA Chemicals - All rights reserved.

The information contained herein is provided for general reference purposes only. By providing the information contained herein, NOVA Chemicals makes no guaranty or warranty and does not assume any liability, with respect to the accuracy or completeness of such information, or product results in any specific instance, and hereby expressly disclaims any implied warranties of merchantability or fitness for a particular purpose or any other warranties or representations whatsoever, expressed or implied. Nothing contained herein shall be construed as a license to use the products of NOVA Chemicals in any manner that would infringe any patent. Nothing herein shall be copied, reproduced, distributed or otherwise used without the express written permission of NOVA Chemicals.

NOVA Chemicals' logo is a registered trademark of NOVA Brands Ltd.; authorized use/utilisation autorisée.

Responsible Care® is a registered trademark of the Chemistry Industry Association of Canada (CIAC).

BONFIRESM is a service mark of NOVA Chemicals Corporation.