7-9-11 Layers Which are the Most Suitable Applications

Tom Bezigian

PLC Technologies

Film, Sheet & Extrusion Consulting

Agenda

- Introduction
- Background/technology revisited
- Benefits of coextrusion
- Advantages of multilayer lines with example structures
- The next generation
- Alternative technologies

Introduction (Equipment)


- Mono-layer blown film extrusion is very well established
- Film manufacturing evolved from monolayer to coextrusion for many reasons
 - Equipment developments
 - Resin developments
 - Process development
 - Education
 - Market needs
 - Economic forces
- Coextrusion development began about 60 years ago

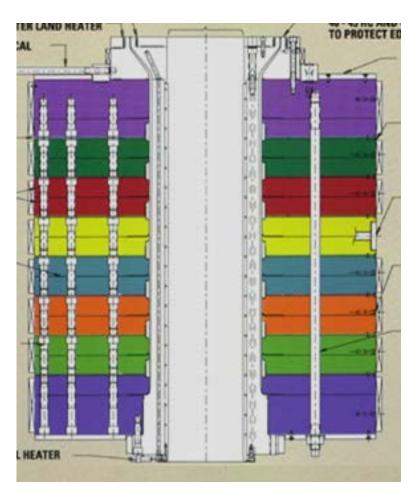
UMASS-Lowell Plastics Engineering Department Mono-Layer Blown Film Lab Photo by Tom Bezigian

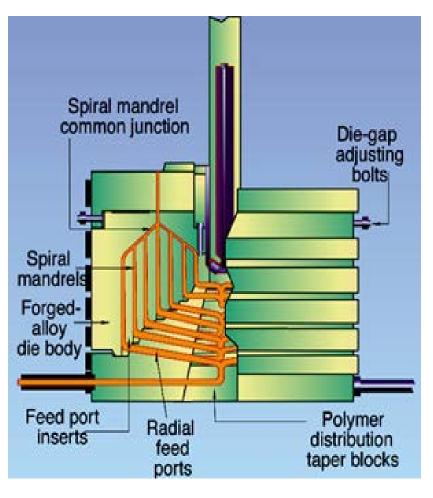
Alpine 5-Layer Plate Die

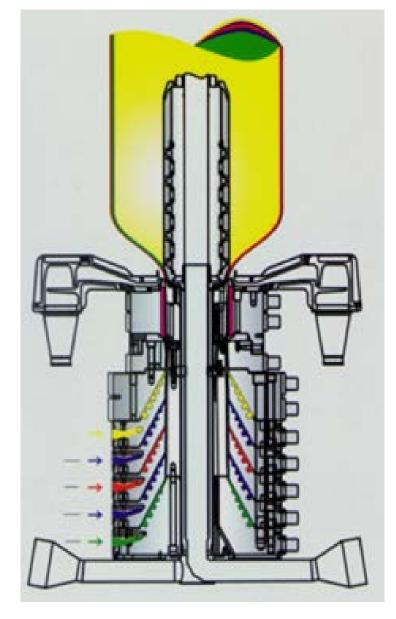
(Adapted from the UMASS-Lowell Plastics **Engineering Department Process** Engineering curriculum – UML)



Stacked Conical Mandrel Coextrusion Blown Film Die


7-Layer Taper Pack Macro Engineering Coextrusion Die for Heat Shrinkable Biax Film, Courtesy Macro Engineering


9-Layer Concentric (Nested) Spiral Die (UML)



Courtesy Battenfeld Gloucester

Blown Film Die Variation

Courtesy Brampton Engineering

Plate, or Pancake Die

Courtesy Battenfeld Gloucester

Concentric Spiral Mandrel

All images courtesy Gloucester Engineering

Courtesy W+H
Stacked Conical Spiral Mandrel

Benefits of Coextrusion

- So, how did we go from one to three and five layer films to 7, 9, and 11-layer films?
- What is driving the market to films with more and more layers? It seems all the major manufacturers are offering 7, 9, and 11 layers machines.
- The big question is why?
- Is there a real benefit to be gained from the additional capital expenditure, or is it marketing hype?

Benefits of Packaging & Coextrusion

Packaging

- Product protection
- Puncture and abuse resistance
- Vapor barrier
- Moisture barrier
- Grease barrier
- Chemical barrier
- Light barrier
- Printability
- Heat seal strength
- Heat seal initiation temperature
- Hot tack
- Machinability

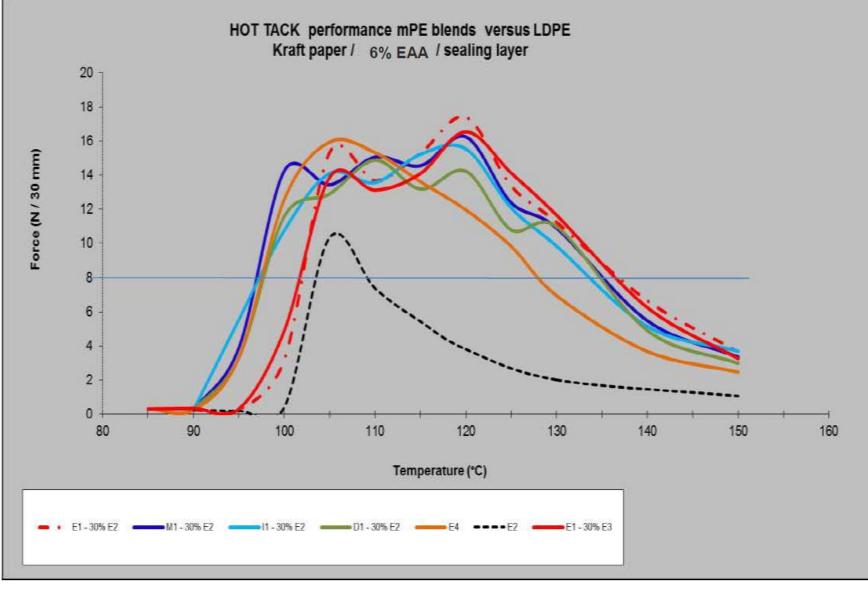
<u>Coextrusion</u>

- Combining incompatible polymers in one step (lamination not needed)
- Optimization of film structures for specific applications
- Improved barrier properties
- Reduced layer thickness of expensive resins
- Controlled respiration (O₂ & CO₂ transmission)
- Improved physical properties
 - Improved Gelbo flex resistance (reduced flexural failures)
 - Thinner, stronger films
 - Improved gloss
- Additional attributes, such as anti-fog, anti-block, COF, two-sided color
- Expanded markets, i.e., competes with rigid packaging
- Reduced cost
- Use of new polymers

Benefits of Coextrusion – Barrier Properties

POLYMER	OTR @ 20°C, 65%RH (cm ³ 20μ / m ² day atm)		GAS BARRIER	
27 Mol% Ethylene EVOH	0.2		Eveellent	
44 Mol% Ethylene EVOH	1.5		Excellent (High)	
PVDC	2.6			
PA	38		Fair	
PET	54	- 50,00	(Medium)	
HDPE	2300	- <u>50,0</u>	JUX	
PP	3000			
PC	5000		Poor	
PS	8000		(Low)	
LDPE	10000			
EVA	18000			

Benefits of Coextrusion – Toughness


- Using LDPE instead of EVOH as an example would require a 1 meter thick (50000 x 20μ) of LDPE to achieve the same O₂ barrier as EVOH
- Thinner layers are obviously less stiff than thicker layers, so improved Gelbo flex resistance is anticipated with thinner layers of stiff materials
- For example, polyamides can be substituted for polyester in a coex structure, allowing for a strong, tough structure with good permeability properties in a one-step blown film process
- For example, frozen food packaging

Benefits of Coextrusion – Heat Seal

Hot Tack Performance – Competitive Assessment

 Heat seal strength, heat seal initiation temperatures, and hot tack strength can be adjusted based on the performance required in the end product

From: Kramer, Van den Bossche, "New Solutions in Flexible Packaging", TAPPI PLACE, May 2014

1-, and 3-Layer Films

- These are the backbone of the blown film industry, and certainly will not disappear any time soon
- Monolayer lines are perfectly suited for commodity, non-barrier films
- Existing lines require no capital outlay
- 1- and 3-layer films feed into the adhesive laminating market
- The limitations of 1- and 3-layer films are barrier, stiffness and heat seal properties

5-Layer Films

- Offer more options and flexibility than 3-layer films
 - Most typically as a barrier film with an EVOH core layer or a PA/EHOH/PA outer skin

Cereal liner, lidding & tube stock, meat packaging, medical devices (fin or lap seal)

Frozen food packaging (fin seal)

5-Layer Film Line

- 5-layer films eliminate the need for the secondary step of adhesive lamination (of simple structures)
- The modulii of laminated oriented PA, PP or PET films are similar ro unoriented polyamide coex blown films [6]
- 5 extruders in (more or less) a semicircle
- Big improvement over 3-layer films, but limited in performance compared to 7, 9, 11-layers

7-Layer Films – Cost reduction

- 7-layer structures can utilize a lower-cost LLDPE in the second layer and an expensive, high-performance metallocene LLDPE as the skin layer, which has superior hot tack and heat seal properties.
- [mLL / LL / Tie / EVOH / Tie / LL / mLL] optimizes performance and cost, and is used for milk packaging [4]
- Basically a cost reduction analog to the 5layer structure previously shown.

7-Layer Films – Improved Barrier/Strength Properties

• If improved barrier properties and toughness are required in the finished product, the following structure is applicable and can be made with a 7-layer die

[LL / Tie / Nylon / EVOH / Nylon / Tie / mLL]

- This structure is used as a lidding film with excellent barrier properties and gloss.
- Flexibility is controlled with thickness
- The metallocene PE layer can be anymPE, such as POP, etc.

7-Layer Films – Thermoform Fill Seal Trays

- Substituting the mLLDPE with EVA is used in a thermoformable cheese tray
- The point made here is that more layers offers the package designer more options
- Thought to be about 100 7-layer lines in use today

9-Layer Films – Semi-Rigid Barrier Structure

- 9-layer rigid, high barrier structure using cost/ performance optimized PE resins
- The thickness of the nylon layers control modulus
- Similar to the 7-layer structure except that the skin layers can be split into two to optimize cost and performance for a particular application
- Frozen foods, stand -up pouches, thermoform-fill-seal
- Approximately 50 9-layer lines are reported to be in use today

11-Layer Films

- 11-layer retortable, high-barrier structure using cost/performance optimized PP and copolymer PP resins
- Sous-vide cooking is all the rage today
- Sous-vide is slow cooking (up to 96 hours) at low temperatures (55-60°C) in a hermetically sealed bag
- 11-layers appears to give the converter & R&D specialist the ultimate in flexibility to optimize barrier, rigidity, heat seal properties and cost.

11-Layer Hosakawa Alpine Coex Line (UML)

OKAMAAIPI

HOSOKAWA ALPINE

str.

Extr. 11

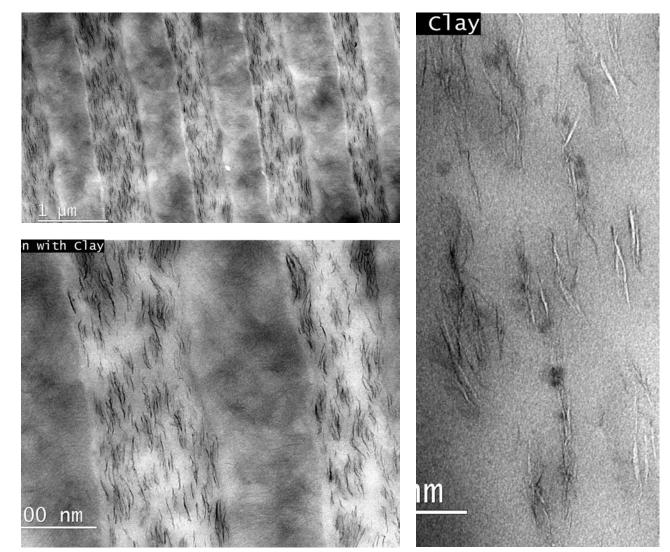

DOS.2

LAST CONTROL

HX65

11-layer vs 5 layer vs monolayer

- Repairs become more challenging than on 11-layer lines vs 1/3/5-layer lines
- At some point there will be diminishing returns at which the cost, complexity, and maintenance of more extruders limits further development


The Next Generation

- While it is not possible to predict the future, at some point simply adding more extruders into bigger and bigger dies becomes unfeasible.
- Layer splitting technology is common now in flat film dies
- BBS Technologies has developed a nanolayer blown film die (US Patent # 8870561)
- True nanolayers in a 77-layer structure

Photomicrographs of nanoclay-filled mPE at 1µ, 500 nm, and 200 nm

- These are photos of a 77-layer polyolefin/polyamide coextrusion
- The benefits of this die are:
 - Greater strength and modulus due to increased BUR capability (5:1)
 - Improved barrier properties, which effectively halves the amount of polyamide required while retaining stiffness

Photomicrographs courtesy of Alpha Marathon Extrusion, Toronto

Thank you for your attention

Disclaimer: The author has no business affiliation and has received no compensation from any company or product shown in this presentation. Presented by: Thomas Bezigian, Principal Consultant PLC Technologies +1 315 382 3241 tom.bezigian@gmail.com or Thomas Bezigian@uml.edu

Bibliography

- 1. US Patent 2820249, "Apparatus for coating articles with multi-layer linings", Colombo Roberto, 21 JAN 1958
- 2. US Patent 3308508, "Die", Walter Schrenk, 14 MAR 1967
- 3. "Blown Film Training", The Dow Chemical Company
- 4. "Rethinking Technology Innovations for High Barrier Applications", Kurt Freye, Reifenhäuser Kiefel Extrusion
- 5. "Properties, Processing and Handling of EVAL[™] EVOH Resins", Gene Medlock, AIMCAL, Oct 2014
- 6. "The Influence of Sealant Modulus on the Bending Stiffness of Multilayer Films", Morris & VanSant, DuPont Packaging White Paper, 2009
- 7. "Coextrusion The Pros and Cons of More Layers", Bill Hellmuth, Gloucester Engineering
- 8. "Nano-layer Micro-layer Structural Advances in Shrink Films", Schirmer et al, 2013 SPE International Polyolefins Conference, Houston, Texas, USA
- 9. http://plasticsengineeringblog.com/2013/01/04/new-technologies-in-stretching-and-touching/
- 10. US Patent number 8870561, "Layer sequence repeater module for a modular disk co-extrusion die and products thereof", Henry Schirmer, 28 OCT 2014