

- > compounding & extrusion
- > materials handling
- > service

Simulation of Co-Rotating Fully Intermeshing Twin-Screw **Compounding Extruders**

Alternatives for process design

Alex Utracki

Director, Process Technology Compounding & Extrusion Head of Process Technology Compounding & Extrusion Coperion Corporation, Sewell NJ

Frank Lechner, Dipl. Ing.

Coperion GmbH, Stuttgart

- Incentives
- Material Properties
- > 1 D Simulation
- > 3 D Simulation
- Summary

Process Design

Process Design

Process Sections of the Twin Screw Extruder

Feeding	Melting	Conveying	Mixing	Venting	Homogen.	Degassing	Metering	
---------	---------	-----------	--------	---------	----------	-----------	----------	--

Viscosity

Strong dependency on temperature and shear rate

Source: Covestro (Bayer Technology)

Reality

- Only MVR available
- Measuring of shear thinning inconsistent
- Viscoelasticity: poor measurement leads to false predictions
- Not available for compounds

Density and Heat Capacity

Strong dependency on temperature

Density Polycarbonate

Heat Capacity Polycarbonate

Source: Covestro (Bayer Technology)

Reality

- Often only constant data for density and heat capacity
- False prediction for flow rate and temperature

Process Simulation (1D – Modeling)

Geometrical Data

- Process set-up
- Screw design
- Screw pitch, etc.

Process Data

- Screw speed
- Throughput
- Temperature profile
- Discharge pressure etc.

Polymer Data

- Bulk properties
- Viscosity data (Flow curves)
- Heat transfer coeffiecents (?)

Simulation Model for:

- Feed intake
- Plastification, devolatilization(?
- Pressure built-up

Process Simulation (1D – Modeling)

No longer maintained

- Akro: Prof. J. White
- Morex

Morex

Sigma

Current

- Polytech WinTxs
- Ludovic
- Sigma
- Company internal:
 Covestro (former Bayer Technology), Coperion

Ludovic

WinTXS

Material Properties Required for Twin Screw Extruder Calculations

Using analytical and numerical methods the following are calculated in the process section:

- Material temperature **T**_{MAT} [°C]
- Material pressure P_{MAT} [bar]
- Degree of fill [%]
- Specific energy input **SEI** [kWh/kg]

Note for the calculations:

- the shaft cooling is not implemented
- most of the element types can be calculated

Material Properties Required for Twin Screw Extruder Calculations

Thermodynamic data

- Crystalline melt / glass transition temperature
- Thermal conductivity
- Thermal conductivity of the solids
- Heat capacity
- Melting enthalpy
- Solid enthalpy

Rheology data (also for blends)

- Viscosity data to get Carreau / Power-Law parameter and
- Temperature shift using Arrhenius / WLF

Densities

- Melt density
- Particle diameter
- Solid density
- Bulk density

Coperion Data Structure for Twin Screw Extruder Calculations

Coperion Data Structure: Screw Configuration Database EXCO

Coperion Data Structure: Material Database PROPFIT

Coperion Example of simulation: ZSK380

46.000 kg/h, 86 rpm, PE-LD, 2440D

Conveying capacity

Artificial neural networks

Cylindrical pellets

Spherical pellets

Powder, preblend, etc. ????

- Simulation Model by ATLAN-tec
- Algorithm: Rummelhart Error Backpropagation
- Model to be trained by real data
- The more input data, the more accurate the result

Conveying capacity

Input Data:

- Screw speed
- Bulk density
- Density
- Compression ratio
- Specific surface

Result:

Feed intake rate

Simulation: Process Sections

- Experience: Conveying efficiency of kneading elements lower than of conveying elements → degree of fill higher in partially filled section
- ZSKalc, BayScrew: ok Sigma: not ok
- Absolute degree fo fill depends on density applied

Simulation: Complete Process

Simulation results such as SEI [kWh/kg] and melt temperature [°C] have to correlate!

- In general: good results for pressure using ZSKalc, BayScrew and Sigma
- Sigma: 2 of 4 tested models for pressure simulations failed

Numerical Technique to Simulate Various Process Conditions Delivers local process conditions

Finite Element Method

- Transformation of coordinates
- Input: Throughput, pressure difference or throughput
- Unknown clearances / wear can falsify the result

Results

- Good graphical and numerical analysis
- Local distribution of pressure and velocity
- Viscosity / shear rate

Example – ZSK – Dynamic – relative pressures [Pa]

Local screw section

- Average pressure: +38 bar
- Pressure peak: +126 bar
- Transition from right hand to left handed screw elements impacts lower enclosed volume
 - → polymer melt is forced over small clearances
 - → local pressure maximum

Source: Covestro (Bayer Technology)

Example – ZSK – Dynamic – relative pressures [Pa]

- Ring 5 mm
- 60/60
- Ring 5 mm
- KB 45/3/50
- Ring 5 mm
- 20/10 Li
- Ring 5 mm

Example – ZSK – Dynamic – relative pressures [Pa]

Dispersive and Distributive Mixing

Gel Dispersion in Different Screw Geometries

Dispersion of droplets in shear flow

Shear flow (viscosity ratio 1/100)

Gel Dispersion in Different Screw Geometries

Velocity profile and particle flow in kneading blocks

Velocity profile in cross section

Particle flow

Gel Dispersion in Different Screw Geometries

Particle dispersion in kneading blocks

Color change indicates number of breakdowns

Screw Elements for Dispersive Mixing

Type of element		Mixing effect	Shearing
X°	90°		
X°	90°		

Summary

- Using 1 D and 3 D modelling can be used to minimize the risk for process design and the scale-up. The result can only be accurate if the required parameters are provided. Finally a comparison with operation or trial data is strongly recommended.
- 3 D modelling delivers local details of a process section whereas 1 D modelling can provide tendencies of process characteristics, e.g. the influence of screw speed on the specific energy input. The optimum screw configuration in the pressure built-up zone can be designed more effectively.
- 3 D modelling will support the design and understanding the function of new screw elements.

Page 33

Thank you very much for your attention.