

Improved Output, Surface Effects & Physicals

Choosing the Right Wax

By: Frank Neuber

Regional Segment Manager,

Waxes for Plastics

Clariant Plastics & Coatings USA, LLC

SPE Olefins 2017

Houston, TX - Feb. 26 - Mar. 1, 2017

2 Public, Clariant Additives - BL Waxes 13.12.2016

CLARIANT

Contontor		CLAR	CLARIAN	
Contents:	Slide no.		Slide no.	
Cover Page "Improved Output"	1	Testing Volatility by TGA and Air Draft Oven	24	
Contents Page	2	What does the testing show? Volatility Results	25	
Clariant at a Glance – An Introduction	3-6	Volatility of Olefin Waxes	26	
Waxes Defined	7	Volatility of Ester and Amide Waxes	27	
What Should Waxes Achieve in Polymers?	8	Reduced Charring of Montan Waxes vs. Stearates	28	
What Should Waxes Achieve with Pigments?	9	Reduced Charring of Licolub PE Waxes vs. Standard Waxes	\$ 29	
Particle Size Influences Dispersion	10	Melt Flow Data – PE + PE 520 Wax – Extruder Output	30	
Lubricant Mechanisms – How they Work	11	MFI Data & Yellowness – Talc-filled PP + Licowax OP	31	
Internal & External Lubricant- Further Explained	12	Spiral Flow & Mold Release Data – Filled PP + Waxes	32	
Differing Chemistries – So What is Used? Offered?	13	Elongation & Flex-Mod – Filled PP + Various Waxes	33	
Waxes Commonly Used in Olefins – Chemistries	14-15	Filter Test & Color Development – PP+ 40% PR 48:2 +WAX	34	
Masterbatchers' Needs for Waxes	16	Elongation & Flex-Mod – Filled PP + Std. & Montan Wax	35	
Molders' Needs for Waxes	17	Filter Test & Color Yield – LLDPE + PR 57:1 MB + Waxes	36	
Extruders' Needs for Waxes	18	Filter Test & Color Yield – LLDPE + PB 15:1 MB + Waxes	37	
How do You Know if All Needs are Met?	19	Filter Test & Color Tield – PP + PV 19 MB + Waxes	38	
How do We Know if Designing Waxes Properly?	20	Summary of Effects – Properly Chosen Waxes	39	
Mold Flow Improvements Measured	21	General Wax Recommendations for Olefins	40	
Easier Mold Release – Quantified	22	Troubleshooting - Correcting Common Wax Issues	41	
Pressure Rise & Color Development Testing	23	Questions? 42, Other Clariant Additives 43, Bibliography	44	

Clariant at a glance – An introduction

A GLOBALLY LEADING COMPANY IN SPECIALTY CHEMICALS

5807

Sales 2015 (CHF m) from continuing operations

227

Net result 2015 (CHF m) from continuing operations

853

EBITDA 2015 (CHF m) before exceptionals

14.7%

EBITDA margin 2015 before exceptionals

Business Areas

companies

countries En

Employees 2015

Ś

4

13.12.2016

Four Business Areas -the right portfolio for growth

Care Chemicals Catalysis

Natural Resources Plastics & Coatings 5 Public, Clariant Additives 13.12.2016

BU Additives, of Clariant Plastics & Coatings – 3 Busines Lines: FR's, Additives and Waxes

Flame Retardants: Innovative products such as patented non-halogenated flame retardants provide environmentally compatible protection for electrical and electronic equipment. Polymer Additives: Polymer additives prevent oxidation, dissipate electric charge accumulation and improve heat, light and weather resistance

Waxes:

Waxes optimized for plastic applications, hot melt adhesives, polishes and protective coatings. Public, Clariant Additives 13.12.2016

BL Waxes – Specialty Performance Waxes

CLARIANT

Licolub[™] & Licowax[™] Montan waxes

Licowax[™] & Licomont[™] Saponified Montan Ester Waxes

Licocene™ Metallocene Olefin Waxes

Ceridust™ Micronized Olefins (PE&PP), Oxidized Olefins, Montans and Amides

icocene[™] Maleic Anhydride-Grafted Metallocene Olefins

Licowax[™] Amide Wax – EBS

Waxes Defined

 Chemical definition: A lipid made up of a chain of alkanes or esters made from fatty acids and alcohols. Source: Oxford Dictionary of Chemistry

www.www.www.www. (C₂₀ to C₇₀)

 Engineering definition: A semi -solid or smooth solid featuring a low melting point and thermoplastic qualities; which may be of animal, plant or mineral origins. Source: *Dictionary of Engineering*.

 Common English definition: A solid substance that becomes soft when warm and melts easily; often used to make candles. Source: Cambridge Learner's Dictionary

What Should Waxes Achieve in Polymers?

During Mixing

- Homogenizing
- Compatibilizing
- Dispersion

During Processing

- Flow Improvement
- Decrease pressure
- Release effect
- Smoothen surface
- Pigment dispersion
- Avoid over-shearing of the polymer
- Increase color yield
- Reduce filter pressure

Article properties

- Provide antiblock effect
- Maintain printability
- Provide gloss
- Provide transparency
- Smooth surface

What Should Waxes Achieve with Pigments?

Particle Size Influences Dispersion

- Influence of Particle Size

Lubricant Mechanism's *How they work in polymers.*

Internal lubrication between polymer chains

External lubrication on the surface

Internal and External Lubrication – Further Explained

Internal Lubrication:

- promotes flow
- promotes weld line fusion
- improved die fill
- reduces die swell
- reduces die drool
- reduces head pressure
- can help keep clarity
- reduces HDT

External Lubrication:

metal release; i.e. "slip"
reduces process temp
can plate out [exusion]
can slow recrystallization (Hc)
can reduce weld line strength
can "pool" in extruders; cause surge
can interfere with printing
can discolor; especially over long runs

In reality, and depending on the concentration, many waxes or lubricants act as both.

Differing Chemistries – Depending on Usage *So, for Olefins, what is used?*

Waxes Commonly Used in Olefins:

Olefin waxes; both polar and non-polar (i.e. PE, PP, Copolymer olefins)

- non-polar (i.e. PE, PP) more miscible in olefins, so mostly stay as an internal lube
- polar (oxidized, grafted or acid-copolymer) not as miscible in olefins, so it exudes to be more like an external lube. Best for functional polymers.

Amides (i.e. oleamide, erucamide, EBS)

- The materials have an aliphatic tail that prefers the polymer. However,
- Their amide (polar) end exudes to lubricate between the olefin and metal, providing the "slip" effect, from which they get their nickname.
- Amides can also act as anti-stats; especially with GMS

Waxes Commonly Used in Olefins (cont.):

Soaps (i.e. saponified metal carboxylates)

$$\left[\begin{array}{c} & & \\ &$$

- lower m.w. types like zinc stearate, calcium stearate (more volatile, char sooner)
- higher m.w. types like sodium and calcium montanates (less volatile, resist char)

Esters (i.e. GMS, FACE, MACE)

- mono-esters of polyols (i.e. GMS) work as anti-stat too; especially with amides
- fatty acid polyesters of polyols reduce volatility and discoloration
- complex esters further reduce volatility; especially when higher m.w., montan waxes

Masterbatchers' Needs from Wax

- Best Dispersion possible
- Highest concentration possible (for their clients' economies)
- Lowest influence on Color
- Color Consistency over a long run
- Minimal die drool or release of oxidized material (black specks)
- Lowest dosages possible
- Low organo-leptic contributions (smell, taste)

Molders' Needs from Waxes

- Flow Improvement; i.e. Longer flow for hard-to-fill, thin-walled parts
 - reduced surface drag (i.e. external, surface lubrication)
 - less molded-in stress (internal lubrication)
 - melt strength retention [read mol. wt. retention] when lubricating
- Faster hardening; i.e. quicker crystallization/nucleation, improved physicals
- Easier mold release = Reduced sticking; without affecting labelling/adhesives
- Resin-rich [smooth] surface and complete "wetting"; with filled polymers
- Improved color development and consistency or transparency when needed

Extruders' Needs from Waxes

Faster output, while maintaining the following:

- Surface smoothness
- Surface release (both metal "slip" and polymer "anti-block")
- Above release without excess wax inhibiting printing
- Low volatiles to reduce build-up of additives on rollers
- Reduced "die drool" at die lip (pressure drop & shear; low m.w. mat'l)
- Improved compatibility / binding of dissimilar material; i.e. WPC

Public, Clariant Additives 13.12.2016

How do **you** know if all needs are met?

- Processing as rapidly as the machinery allows
- Aggressive processing (i.e. high heat) does not discolor the polymer or cause char (specks and streaking)
- Wax does not hinder print adhesion
- Minimal die drool (extrusion)
- Minimal vent plugging and gate blush (injection)
- Color consistency and development

How do **we** know if we are designing waxes properly? *Testing to Theory.*

- Mold flow rate Improvement
- Mold release force reduction
- Reduced surface roughness
- Reduced extruder pressures
- Reduced volatility, vs. standard waxes
- Reduced charring in heated ovens, vs. standard waxes
- Improved pigment dispersion; less specking

21 Public, Clariant Additives 13.12.2016

Mold Flow Improvement Measured -While Keeping Polymer Integrity

Spiral Melt Flow Testing

Haake Kneader – Viscosity Testing

22 Public, Clariant Additives 13.12.2016

Easier Mold Release - Quantified

Molding and Integrated Release Quantifying Force (N) Unit

Molded Cylinders >

Pressure Rise & Color Development Testing

production of the color yield plates measurement of the color yield, (X,Y,Z values, or L*a*b* values DIN 53 235)

Testing Volatility by TGA & Air Draft Oven

What TGA Can Tell You

- Thermal Stability of Materials
- Oxidative Stability of Materials
- Composition of Multi-component Systems
- Estimated Lifetime of a Product
- Decomposition Kinetics of Materials
- The Effect of Reactive or Corrosive Atmospheres on Materials
- · Moisture and Volatiles Content of Materials

TGA for small lab samples.

Air Draft for larger samples to show color development, Charring, etc. 25 Public, Clariant Additives - BL Waxes 13.12.2016

What do These Tests Show? *Volatility Results of Various Waxes*

Volatility of Lubricants

TGA results from Clariant – Gersthofen Lab

Volatility (TGA) of Polyolefin Waxes

Temperature [°C] / isothermal at 300°C [min.]

Volatility (TGA) of Ester and Amide Waxes

Temperature [°C] / isothermal at 300°C [min.]

Reduced Charring of Montan Waxes vs. Stearates *Air Draft Oven at 250C, for 30 min.*

29 Public, Clariant Additives - BL Waxes 13.12.2016

Reduced charring of Licolub PE Waxes

Tempering of PE-Waxes (Oven test 200 °C, Air)

Melt Flow Data with PE Wax

Licowax PE 520 in Polyethylene Flow Improvement

Influence on output rate

Flow Data with Partially Saponified Montan Wax

Licowax OP for Talc-Filled Polypropylene Compounds (30 wt.-%) - Flow Improvement and Color Behavior

- Flow Improvement and Color Denavior

Flow & Mold Release Data – Various waxes

Licowax OP for Chalk-Filled Polypropylene Compounds - Release Force and Spiral Flow Test

Lowest release force, good flow improvement with Licowax OP

Public, Clariant Additives 13.12.2016

Filled PP Physical Testing Data

Grafted Licocene PP Grades for Chalk-Filled Polypropylene Compounds

- E-Modulus and Elongation

34 Public, Clariant Additives 13.12.2016

PP Filter Test and Color Yield Data

 Highly crystalline, low melting, low viscous, micronized PP wax gives the best results regarding dispersion in contrast to other PP waxes

35 Public, Clariant Additives 13.12.2016

Filled HDPE Physical Testing

Licowax OP for Chalk-Filled HDPE Compounds - Elongation and E-Modulus

No negative influence of E-modulus and elongation

LLDPE MB Filter Test and Color Yield

- 40 % Pigment Red 57:1 + 30 % LLDPE (MFR 25)

37 Public, Clariant Additives 13.12.2016

Filter Test – Fast Blue A2R in LLDPE

VN 86931 - 86941

38 Public, Clariant Additives 13.12.2016

Effects of Wax on Dispersion and Color yield

- 30 % Pigment Violett 19 + 40 % PP HG 245 (Borealis)

Summary of Effects of Properly Chosen Waxes

- Better mold release
- Maintains polymer integrity [read viscosity]
- Improved melt flow; easier mold fill
- Better color consistency; less charring
- Reduced volatiles; less mold / vent cleaning
- Quicker recrystallization (injection molded crystalline poymers); i.e short cycles
- Improved spherulite formation; i.e. better impact physicals
- Resin-rich surface with filled compounds; better appearance
- Maintains better clarity, where applicable
- Improve pigment dispersion and color consistency

General Wax Recommendations for Olefins

PP fiber masterbach	Fiber	Dispersion	Licocene PP 6102
PP-filled	Extrusion Injection molding	Dispersion, output, Surface quality, Hydrophobation	Licowax OP Licowax C Licolub FA 1 pwd. veg. based Licocene PP MA 6452 Licocene PP MA 7452
PP-filled, rubber modified	Injection molding	g Release effect, Mechanical properties, Paintability	Licolub WE 40
PP-recyclate Filled recylate		Flow properties	Licocene PP 6102 Licowax OP Licocene PP MA 6452 Licocene PP MA 7452
HDPE	Tapes	Slip agent	Licowax C Licolub FA 1 pwd. veg. based
PE-recyclate Filled recylate		Flow properties	Licowax PE 520 Licowax OP Licowax C Licolub FA 1 pwd. veg. based
PE-filled	Extrusion Injection molding	Dispersion, output, Surface quality, Release effect	Licowax OP Licocene PE MA 4351

Troubleshooting – Correcting Common Wax Issues:

Problem	Possible Causes	Remediation	
Blacks specks in PE film, or PP extrudate	- excessive die or barrel heat, wax not thermally stable, or other additives not thermally stable and the lube is allowing co- exusion or release from the metal	Use a lube of higher thermal stability; i.e. Licowax OP, PE 520, Licolub WE 40. See Heated Oven results (slides 28,29) for examples.	
Pigments chunks or flecks in PE film or film masterbatch	- poor dispersion	Improve masterbatch or compound dispersion with Licowax PE 520 or Licocene PE 4201.	
Agglomerates in PP fiber masterbatch	- poor dispersion	Improve dispersion with Licocene PP 6102.	
High amp or Torque in highly loaded MB	- melt flow too stiff, colorants not wetted out	Increase melt flow with Licocene PE 520	
High Amp or Torque in rubber modified PP	- melt too stiff, metal drag or friction	Increase flow & metal release with Licolub WE 40	
Poor adhesion/wetting/compatibility of wood filled olefins - both PP and HDPE Black streaks in extrudate or molded part	- excessive moisture, or insufficient functionality of olefins to bond to hydroxyl-rich surface of cellulosics - additive or wax depositing in the die block or manifolds/runner and charring	Improve wetting out and coupling to achieve better tensile and flex-mod with Licocenes PP MA6453, PP MA 7452 Substitute wax with greater thermal stability; i.e. Licowax PE 520, OP or WE 40. If the problem still persists, check other additives, or colorant dispersion.	
Mold vents clogging, excessive mold residue, gate "blush"	- insufficient venting, excessive volatilization of wax or additives	Substitute with lower volatility waxes such as montan Licolub WE 40, OP waxes or PE Licowax PE 520 or 190, per chart on slides 25 - 27.	
HDPE or PP parts sticking in mold	- insufficient metal	Reduce pull force / mold adhesion with a "slip" like Licowax C. If molding UHMWPE, use Licolube WE 40 for better thermal stability at high temp	

42 Public, Clariant Additives 13.12.2016

CLARIANT

QUESTIONS?

Other Clariant Chemistries for Your Polymers:

- Antioxidants (primary): e.g. Hostanox[®] O, and O 310
- Antioxidants (secondary): e.g. Hostanox[®] P-EPQ
- Antistatic Agents: e.g. Hostastat[®] HS1
- Flame Retardants: e.g. Exolit[®] OP and APP (non-halo)
- Llight Stabilizers (HALS): e.g. Hostavin® N30
- Light Stabilizers (UV Abs'): e.g. Hostavin® VSU

44 Public, Clariant Additives 13.12.2016

Cited Sources - Bibliography

- Oxford Dictionary of Chemistry, 6th Ed., 2008. Oxford University Press
- Dictionary of Engineering, 2nd Ed., 2010. McGraw Hill Publishers
- Cambridge Learner's Dictionary with CD ROM, 3rd Ed. 2009 Cambridge University Press
- New Montan Waxes-General Presentation, Clariant P&C, 2016. Author: C. Lechner
- Waxes for Plastics General introduction, Clariant P&C, 2010. Author: C. Lechner
- Waxes- Portfolio, Chemistry & Effects 2, Clariant P&C, 2016. Author: N. Karche
- Improved Pigment Dispersion with Micronized Waxes, Clariant P&C, 2013. Author: M Roecker
- Licocene for Masterbatch, Paper DA8412 Clariant P&C, 2016, Author: H. Diem
- Effective Waxes for Masterbatches, Paper DA 8450 Clariant P&C, 2013. Author H.Diem
- Polymer Additives Handbook Gachter & Muller, 4th Ed. 1996. Hanser Gardner Publications