

Polyolefin Dispersions For Automotive Interior Applications

Tuesday, Feb 28, 2017

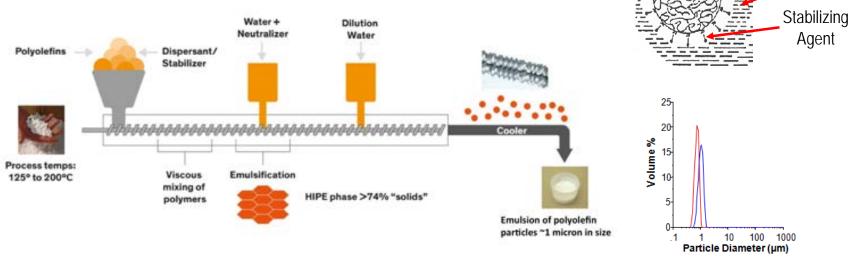
A. Chaudhary, P. Walia - The Dow Chemical Company, Midland, MI S. Wakumoto – Colorado State University

Presentation Outline

Introduction

- BLUEWAVETM Dispersion Technology
- Polyolefin Dispersions (PODs)

PODs for Automotive Applications


- Spray Skin Technology
- Value proposition
- Properties of PO skins
 - Physical properties/Thermal stability
 - Grain retention
 - Adhesion to polyurethane foam
- Use of PODs in alternative processes for making skin

Summary

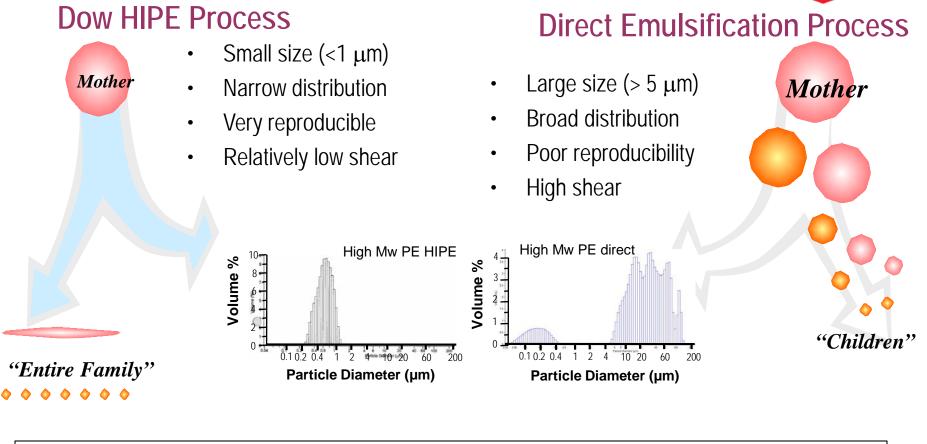
BLUEWAVE[™] Technology Bluewo

- Proprietary continuous emulsification process using high-shear mixing to create a solventfree dispersion with submicron particles.
 - Solvent-free process
 - Effective with high viscosity polymers
 - Amenable to multiple polymer types
 - Low viscosity dispersion
- Polymer types
 - Polyolefin (HYPOD[™], CANVERA[™], ECOSMOOTH[™]),
 - Epoxy (Prosperse[™]), Ethylene vinyl acetate (ACCENT[™])
 - Alkyd, polyester, silicone, urethane, acrylics and others

Controlled particle size

- Minimal surfactant
- Polymer modification unnecessary

DOW


Polyolefin

Water

High Solids

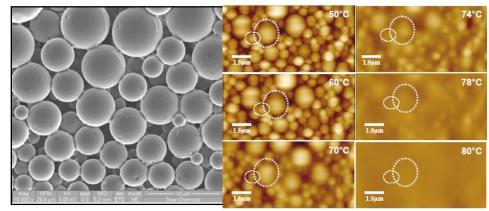
Droplet Formation Mechanism

JANSSEN and MEIJER J. Rheol. 37(4), July/Aug 1993 01486055/93/37(4)/597/12

™ Trademark of The Dow Chemical Company ("Dow") or any affiliated company of Dow

Dispersion Properties

- Average ~1.0 μm diameter
- 30-55% solids in dispersion
- Viscosity < 500 cps


Material Properties

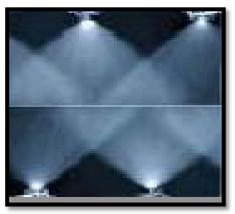
- LDPE, HDPE, PP, Olefin elastomers, functional olefins (ex: -OH, -MAH)
- Can vary properties (Tg, % crystallinity, Mw) to tailor application properties:
- Toughness
- Haptics
- Moisture barrier
- Adhesion to other substrates
- Dispersions provide a convenient form to utilize polyolefin elastomers and blends for different applications

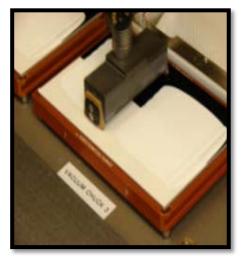
Film Formation – Hot Stage Microscopy

Suitable for Industrial Applications with Cure Cycle, Semicrystalline polyolefin dispersion, Tm ${\sim}70\ {}^\circ\text{C}$

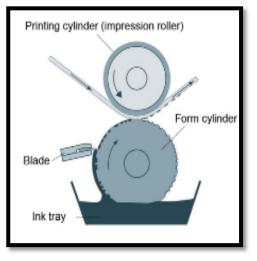
- Polyolefin Dispersion Applications
 - Paper Coatings
 - Hot Melt Adhesives
 - Pressure Sensitive Adhesives
 - Health & Hygiene
 - Plastic Coatings
 - Gaskets for Metal Closures
 - Carpet Backing
 - Hair care

Aqueous Dispersion Application Methods


Stable Liquid Dispersions

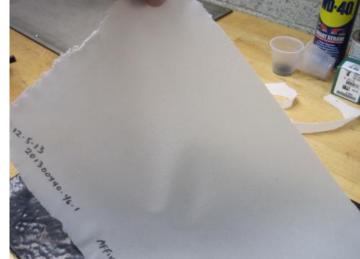

Spray Dried Powders

Spray Application


Draw Downs

Dipping

Rotogravure & Inkjet



[™] Trademark of The Dow Chemical Company ("Dow") or any affiliated company of Dow

Spray Skin Technology

- Skins are formed via spray drying on tools heated to 60-95 °C
 - Technology has been trialed at lab scale and on instrument panel (IP) tools
- Dispersion can be sprayed with existing spray equipment or on a low capital paint line
 - No mixing & curing requirements
- Skins have good haptics (feel), grain replication, scratch & mar
- Technology is early stage and requires development

Value Proposition for Spray Skin

- · Potential advantages over incumbent material.
 - Weight Savings
 - Lower density (~0.88 g/cc) compared to PU and PVC
 - Potential of thin gauging
 - Simplified Process
 - No mixing & curing steps (less expensive equipment)
 - Low tooling requirements (~ 80°C process) longer drying time is the potential drawback
 - Lower VOCs compared to PU and PVC
 - Recyclability
 - Scrap & overspray can be captured
 - Can enable an all olefin instrument panel construction
 - Aesthetics
 - Enable unique design (e.g. two tone color, overmolding)

Materials Used

Polymers

Materials	Material Properties	Flow Rate g/10 min	Density g/cm ³	
OBC-1	Shore A = 83	5	0.887	
OBC-2	Shore A = 60	5	0.866	
EAA Copolymer	20.5 wt% acrylic acid content	300	0.958	

Thickeners

Materials	Material Properties		
CELLOSIZE [™] QP 15000H	Medium MW cellulosic polymer		
CELLOSIZE [™] QP 100MH	High MW cellulosic polymer		

PO Dispersions

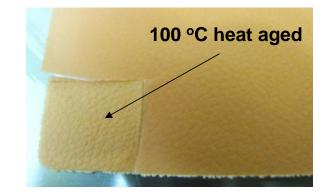
			_
Material Properties	POD-1	POD-2	
Polymer Used	OBC-1	OBC-2	%
Average Particle Size (µm)	1.07	0.97	nme
Viscosity @ 20°C (cP)	280	250	Volur
Solids (wt%)	40.2	39.8	
рН	10.4	10.2	
			-

15 10 5 0 .1 1 10 100 1000 Particle Diameter (μm)

25₁

20

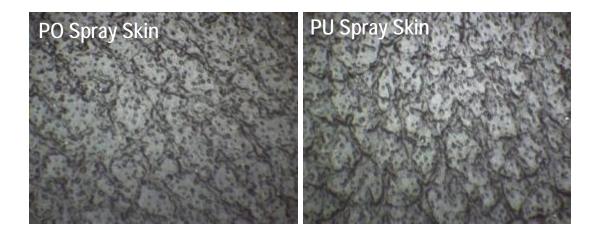
TM Trademark of The Dow Chemical Company ("Dow") or any affiliated company of Dow



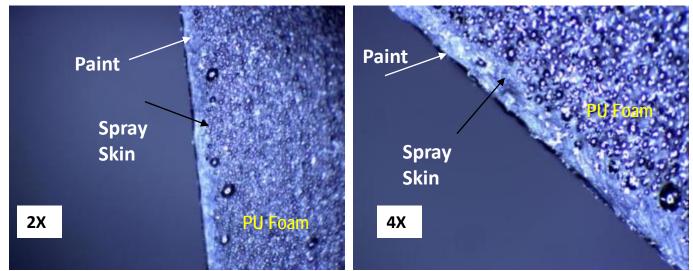
Physical Properties

- Comparable Shore A and tear strength
- Lower Tensile strength and elongation at break
 - Impact on part performance (during air bag deployment) is expected to be minimal
 - Requires validation

Skin Type	Shore A	Tear Strength ISO 34-1 (N/mm)	Tensile Strength ISO 527-3 (N/mm ²)	Elongation at Break ISO 527-3 (%)
PO Spray Skin 1	73-78	24	5.0	170
PO Spray Skin 2	73-78	21	4.8	160
Aromatic PU Spray Skin	73-78	14	6.7	240
PVC Slush Skin	73-78	31	11.0	301

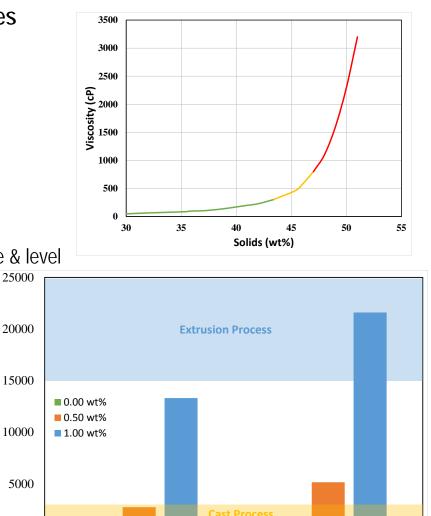

- Thermal Stability of PO spray skins
 - 100°C, 4 h in a convection oven
 - Melting point of PO skin ~ 122°C
 - Excellent grain retention

• Excellent grain and feature replication



Spray Skins – Adhesion to PU Foam

- Dow PU foam system (PAPI-94 isocyanate and NM 858)
 - Cohesive failure
 - Excellent adhesion
 - Foam
 - Paint



TM Trademark of The Dow Chemical Company ("Dow") or any affiliated company of Dow

Alternative Processes for making PO Skins

- Viscosity requirements for various processes
 - Spraying Process (100 1000 cP)
 - Cast Process (1500 3000 cP)
 - Extrusion Process (15000 30000 cP)
- Use of thickeners
 - Process flexibility
 - One PO dispersion
 - Viscosity can be altered by thickener type & level
 - Two thickeners used in this study
 - CELLOSIZETM QP 15000H
 - CELLOSIZETM QP 100MH

Spraving Proces

CELLOSIZE(TM) QP 100MH

CELLOSIZE(TM) QP 15000H

0

Summary

- Dow has developed polyolefin aqueous dispersions specifically designed for the automotive market to meet interior application requirements
- Aqueous dispersions can be applied in a number of ways sprayed, cast, dipped or extruded
- Focus area is for soft skins for IP/DP and for overmolding applications
 - Dispersion can be sprayed with existing spray equipment or a low capital paint line (process technology under development)
 - Skins have excellent haptics (feel), grain replication
- Direct adhesion to PU paint and foam and other polar substrates
- Initial data shows good mechanical performance & thermal stability
 - Further validation is needed
- Key advantages are lightweight, low VOCs, recyclability and design flexibility

Thank You