Strategies for the Stabilization of Thermoplastics Polyolefin Roofing Membranes

Marty Paisner

Vanderbilt Chemicals, LLC

- Wholly owned subsidiary of:
 - R.T. Vanderbilt Holding Company, Inc.,
 - A privately held, global corporation
- Member of American Chemistry Council
 - Responsible Care Company
- ISO 9001-2008 10002461 Registered

Vanderbilt Chemicals, LLC

Main business focuses are:

Vanderbilt Chemicals, LLC

Main Plastics Business:

STABILIZATION SOLUTIONS

- Antioxidants
- Metal Deactivation
- UV Stabilizers
- Custom Blends

POLYMER MODIFIERS

REINFORCING AGENTS

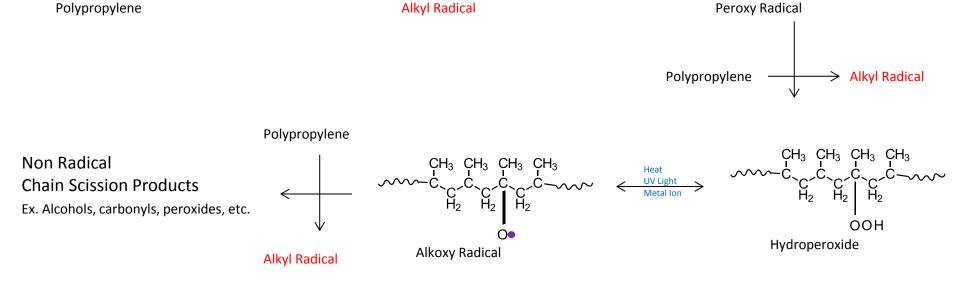
Strategies for the Stabilization of Thermoplastics Polyolefin TPO Roofing Membranes

Agenda

Background to TPO Roofing

Polyolefin Auto-Oxidation and Stabilization Design of Experiments – TPO Roofing Stabilization

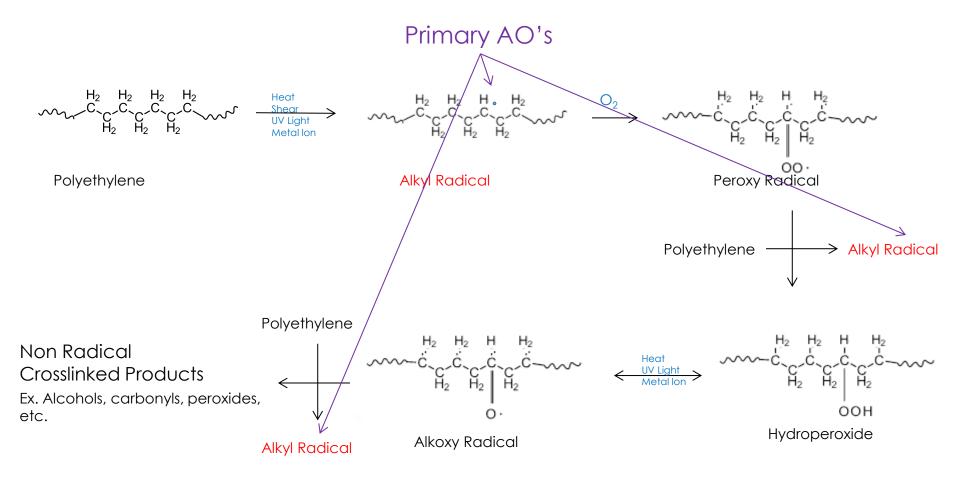
Background to TPO Roofing


Advantages of TPO Roofing

- Lightweight and easier to handle/install compare to other roofing materials
- Resistant to many chemicals
- Seams can be heat welded
- Good cold temperature flexibility
- No external plasticizers needed
- Economics

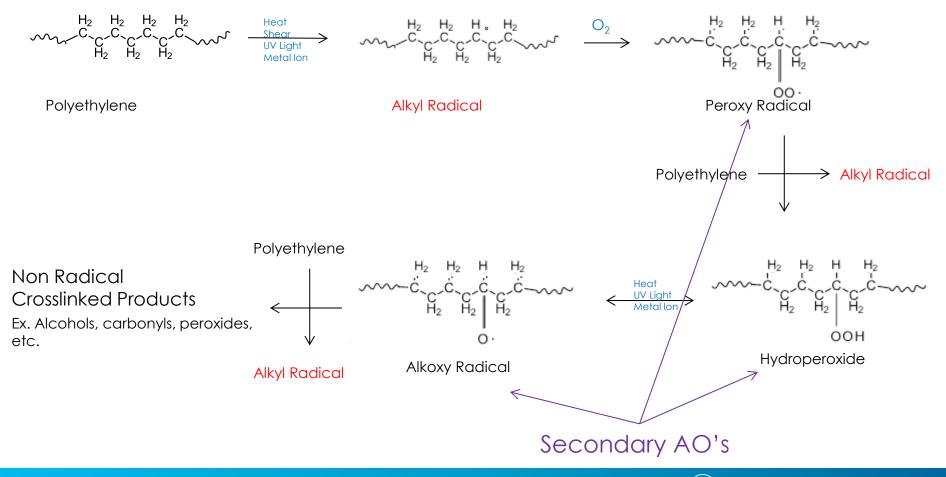
All good when this guy doesn't have to reinstall roofing for a long time!!!

Polyolefin Auto-Oxidation Chemistry Mechanism

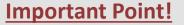

00

Polyolefin Auto-Oxidation Chemistry Stabilization Additives

Primary AOs (Free Radical Scavengers)	Secondary AOs (Peroxide Decomposers)	UV Stabilizers
 Hindered Phenolics Diphenylamines Hydroquinolines 	 Phosphites Thioesters Zinc 2- mercaptotoluimidazole (ZMTI) Co-synergists 	 Hindered Amines UV Absorbers

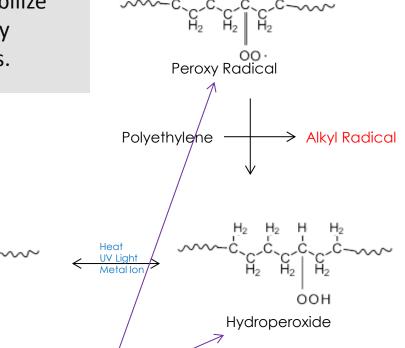


Polyethylene Auto-Oxidation Chemistry Stabilization Additives



Polyethylene Auto-Oxidation Chemistry Stabilization Additives

Polyethylene Auto-Oxidation Chemistry Stabilization Additives



Different "Secondary AO's" stabilize the peroxide, alkoxy and peroxy radicals to different efficiencies.

~ċ~ç~ċ~ç

Alkoxy Radical

i.e. Synergism between them!

Stabilization DOE Study

Base Formulation

- TPO/MgOH/TiO₂ 65/30/5

TPO – *Lyondell CA10A* – supplied by Nexeo Solutions

MgOH – MagShield S NB10 - supplied by Martin Marietta Magnesia Specialties

TiO₂ – *TiONA 696* – supplied by Cristal Global

Stabilization DOE Study

- Base Formulation
 - TPO/MgOH/TiO₂ 65/30/5

Constants:

- Hindered Phenolic AO
- HALS
- UVA
- Primary/Secondary will be held at a ratio of 1:1. (The combined total level will change, see below.)

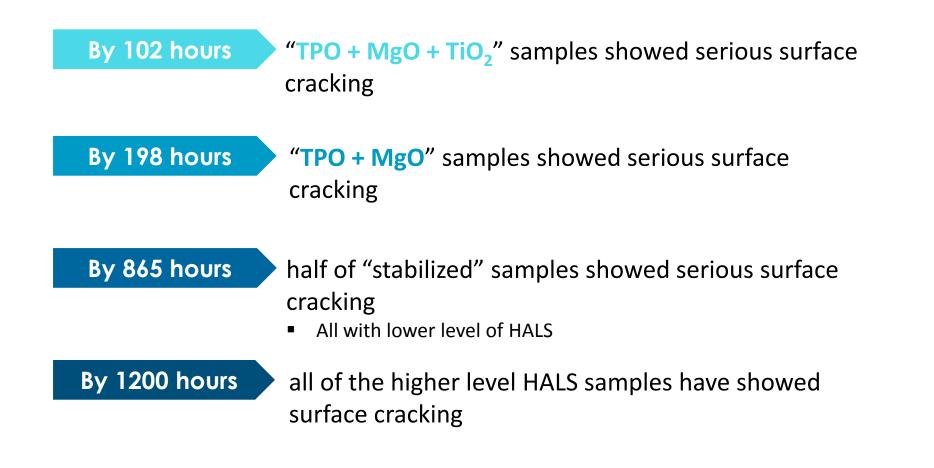
Stabilization DOE Study

Variables:

- HALS Level (Low 0.2 pph, High 0.5 pph)
- UVA Level (Low 0 pph, High 0.5 pph)
- Primary/Secondary Level (Low 0.2 pph, High 0.6 pph)
- Secondary AO type (three different types)

Stabilization CTQs

- Physical tests after Exposure
 - Heat Aging: ASTM D6878: LTHA @ 116 °C for 224 days
 - Breaking strength, elongation, 90% Retained Value, others?
 - UV aging: ASTM D6878: Exposure 10,080 KJ/m²/nm
 - Visual inspection for cracking crazing
 - Accelerated Heat Aging Test, LTHA @ 135°C until failure

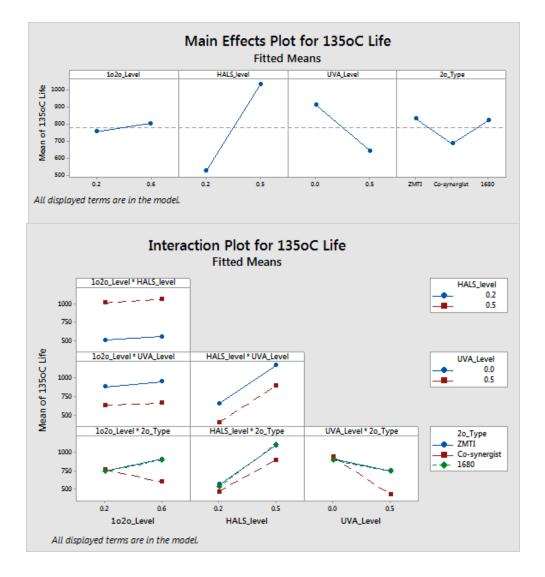

Stabilization Study Status

- 116°C Oven
 - "TPO + MgO + TiO₂" samples showed serious cracking a 730 hours
 - "TPO + MgO" samples showed serious cracking at 1189 hours
 - All stabilized samples still good (currently 3000 hours)
- Weatherometer
 - At 844 KJ/m², "TPO + MgO" samples showed surface cracking, "TPO" samples showed slight cracking
 - At 1622 KJ/m², "TPO + MgO + TiO₂" samples are warped
 - All stabilized samples still good (currently 3500 KJ/m²)

Stabilization Study Status

Accelerated Heat Aging (135°C)

DOE Results 135°C End-of-Life Error Model with 8 DF


Source	DF	Adj SS	Adj MS	F-Value	P-Value
Model	9	1671284	185698	28.77	0.000
Linear	5	1503571	300714	46.58	0.000
1o2o_Level	1	5373	5373	0.83	0.388
HALS_level	1	1041137	1041137	161.28	0.000
UVA_Level	1	300277	300277	46.52	0.000
20_Type	2	68799	34400	5.33	0.034
2-Way Interactions	4	178614	44653	6.92	0.010
1o2o_Level*2o_Type	2	92984	46492	7.20	0.016
UVA_Level*20_Type	2	101501	50751	7.86	0.013
Error	8	51644	6455		
Total	17	1722927			

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
80.3459	97.00%	93.63%	74.14%

Main Effects plus Interactions

Conclusions

- HALS the "meat" of LTHA Stabilization
- UVA detriment to heat aging
- ZMTI as good as 1680
- Co-synergist interacted with UVA negatively

Next Steps

- Use two HALS at different MW's
- Look at higher levels of HALS
- Use two 2° AOs for synergy
- Process stabilization

QUESTIONS?

Vanderbilt Laboratories

