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Background

3D Flow simulation for complex extrusion die geometries have been
commercially available since 1990’s

@ Today, routine simulation work is possible for complex flow
geometries, non-Newtonian and non-isothermal flows with overnight

computations
® Automatic routines for geometry optimization / flow balancing

® More complex cases including viscoelastic modeling or multi-layer
coextrusion capability are also available
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3D flow simulations in the 1990Q0’s
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J. Dooley, “Simulating the Flow in a Film Die Using Finite Element Analysis”, SPE ANTEC Tech Paper 168-171 (1990)
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Today: Routine 3D FEA for the industry

®Solving for non-Newtonian, non-isothermal flow using commercial 3D
FEA solver for complex geometries

Example of window profile
extrusion die

Example of window profile
extrusion die flow channel

O. Catherine, “Advances in Shear Rheology and Flow Simulation for High Performance Extrusion Die Design”, SPE
International Polyolefins Conference (2015)
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Today: Routine 3D FEA for the industry

®Solving for non-Newtonian, non-isothermal flow using commercial 3D
FEA solver

O. Catherine, “Advances in Shear Rheology and Flow Simulation for High Performance Extrusion Die Design”, SPE
International Polyolefins Conference (2015)
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Today: Routine 3D FEA for the industry

®Solving for non-Newtonian, non-isothermal flow using commercial 3D
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O. Catherine, “Advances in Shear Rheology and Flow Simulation for High Performance Extrusion Die Design”, SPE

International Polyolefins Conference (2015)
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Viscosity model

®Polymer viscosity Shear rate and temperature dependent model

Carreau-Yasuda model Arrhenius model

O eme(El)

n(y,T) =no X ar[l+ @Ay xar)?] a
Mo is the zero-shear viscosity in Pa.s Arrhenius empirical model - typically better for
A is the characteristic time T>T,+100°C.
n is the pseudoplastic index E,: Activation Energy (J.mol%)
a is the Yasuda parameter “transition R: |deal gas constant =8.3144621 J.molL.K™

L e . \TO:Referencetemperature(K) /

O. Catherine, “Learning from Shear and Extensional Rheology of a few Extrusion Coating Polyethylenes”,
TAPPI PLACE Conference, Fort Worth — TX (2016)
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Viscosity model

®The Carreau-Yasuda model
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O. Catherine, “Learning from Shear and Extensional Rheology of a few Extrusion Coating Polyethylenes”,

TAPPI PLACE Conference, Fort Worth — TX (2016)
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Viscosity model

@®The Arrhenius model

ARRHENIUS FIT
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O. Catherine, “Learning from Shear and Extensional Rheology of a few Extrusion Coating Polyethylenes”,
TAPPI PLACE Conference, Fort Worth — TX (2016)
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Viscosity model

Full shear rate and temperature dependent model
® Model vs. measured data

10000
@
&
g 1000 e 180 [:C] 160 [:C]
£ 140 [°C] e 120[°C]
= 200 [°C] e 220[°C]
§ ® 240[°C] e 280[°C]
S ® 260 [°C] ——Model @ 280 °C (Tref)
x 100 —Model @ 260 °C — Model @ 240 °C
g ——Model @ 220 °C Model @ 200 °C
S N ——Model @ 180 °C Model @ 160 °C
Model @ 140 °C ——Model @ 120 °C
10
0.01 0.1 1 10 100 1000 10000

Angular Frequency o (Rad/s)



CLOEREN

e e = A Heritage of Performance

The importance of thermal aspect of the flow

Polymer viscosity can be very temperature sensitive

HDPE TPU
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The importance of thermal aspect of the flow

Thermal / mechanical coupling within the flow:

Steady State Energy balance: pC(V-VT) = kAT +t: €

|
1
L '
1
Convection Conduction Mechanically generated = :

flow / thermal coupling 1

With:| T = 2n€ “Viscous” Stress tensor

1
€= > (\7v + (VV)T) Rate of deformation tensor
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The importance of thermal aspect of the flow

® Generally, viscous dissipation in die flow channel is small
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O. Catherine, “Effect of Typical Melt Temperature non-Uniformity on Flow Distribution in Flat Dies”, SPE ANTEC
Conference (2012)
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The importance of thermal aspect of the flow

® Actual example of excessive viscous dissipation: PVB extrusion

Melt temperature TC
() ()
vacuum
ol
Y
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Static mixer (6x), oil
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O. Catherine, “A Practical Example of Film Extrusion Process Troubleshooting and Fine Tuning”, SPE ANTEC
Conference, Orlando FL (2015)
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The importance of thermal aspect of the flow

® Actual example of excessive viscous dissipation: PVB extrusion
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O. Catherine, “A Practical Example of Film Extrusion Process Troubleshooting and Fine Tuning”, SPE ANTEC
Conference, Orlando FL (2015)



CLOEREN A Heritage of Performance”

o IKNCORPORATED

The importance of thermal aspect of the flow

® Actual example of excessive viscous dissipation: PVB extrusion
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O. Catherine, “A Practical Example of Film Extrusion Process Troubleshooting and Fine Tuning”, SPE ANTEC
Conference, Orlando FL (2015)
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The importance of thermal aspect of the flow

® Actual example of excessive viscous dissipation: PVB extrusion

4 ==

F ] Process troubleshooting concluded to:

1) The processed material was a different
formulation
2) The melt temperature was too high due to
viscous dissipation in the extruder.
 Adapters were run colder
e Qutput was lowered
3) Flow model with adjusted parameters was
run for confirmation

Unfortunately at start-up, without lip adjustment, a very non-
uniform flow was coming out of the die (non-uniform film
thickness measured by online gauge system):

e 20 variation of 131.28 um for an average thickness of 780 um
e 16.8% variation

O. Catherine, “A Practical Example of Film Extrusion Process Troubleshooting and Fine Tuning”, SPE ANTEC
Conference, Orlando FL (2015)



CLOEREN A Heritage of Performance”

INCDODRPORATED

The importance of thermal aspect of the flow

® Actual example of excessive viscous dissipation: PVB extrusion
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O. Catherine, “A Practical Example of Film Extrusion Process Troubleshooting and Fine Tuning”, SPE ANTEC
Conference, Orlando FL (2015)
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The importance of thermal aspect of the flow

® Actual example of excessive viscous dissipation: PVB extrusion
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O. Catherine, “A Practical Example of Film Extrusion Process Troubleshooting and Fine Tuning”, SPE ANTEC
Conference, Orlando FL (2015)
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The importance of thermal aspect of the flow

® Can a static mixer help?

e Mixer with six “bow-tie” mixing elements
e Commonly used in sheet, film and extrusion

coating applications
e 3D flow simulations run to evaluate the

e Complex flow —only 3D FEA can capture

O. Catherine, “Evaluation of the Flow Performance of a Static Mixer for non-Uniform Incoming Melt Temperature
with Computational Fluid Dynamics (CFD)”, SPE Eurotec, Lyon France (2013)
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The importance of thermal aspect of the flow

® Can a static mixer help?
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O. Catherine, “Evaluation of the Flow Performance of a Static Mixer for non-Uniform Incoming Melt Temperature
with Computational Fluid Dynamics (CFD)”, SPE Eurotec, Lyon France (2013)
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The importance of thermal aspect of the flow

® Can a static mixer help?

@ Input entrance temperature profile
Maximum at center of flow channel
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O. Catherine, “Evaluation of the Flow Performance of a Static Mixer for non-Uniform Incoming Melt Temperature
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The importance of thermal aspect of the flow

®Can a static mixer help? 205
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O. Catherine, “Evaluation of the Flow Performance of a Static Mixer for non-Uniform Incoming Melt Temperature
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Automatic Optimization

®Several studies - complex optimization procedure and constraints
definition
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M. Gupta: “Automatic Optimization of Extrusion Dies”, SPE ANTEC Conference, Indianapolis, IN (2016)
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Coextrusion

® Analytical models for Newtonian flows can provide some valuable
information

®Non-Newtonian analytical models are more involved

®@Some 2D and 3D software based on finite element analysis can model
multi-layer flows

e Advantages: complex geometry can be modeled, non-Newtonian and in some
cases non-isothermal models can be run

e Limitations: lack of precision at the interface, no physics for viscous
encapsulation
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Coextrusion

® Example |: comparison of analytical solution with 3D FEA

Calculated velocity profiles
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Coextrusion

®@Example II: 3D FEA non-isothermal non-Newtonian Flow (PolyXtrue)

I 4.90e+02
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Conclusion

® Since the 1990’s with the first 3D modeling work, significant progress has
been made that makes flow simulation technology very valuable for die
design and optimization

®@Routine 3D non-isothermal non-Newtonian models are run with complex
flow geometry

®0n the practical level, the thermal aspect of the flow is at the origin of a
significant number of extrusion problems

@Regid?nce time evaluation is also an important parameter (not discussed
today

®More advanced modeling such as automated optimization, coextrusion and
viscoelastic flows is making also substantial progress
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