

Jarod M. Younker, PhD

POLYMER PROPERTIES AND MOLECULAR MODELING

MODELING SCALES

TALK OVERVIEW

Flex Modulus/Solubility Parameters of Nylon Plasticizers

Thermal Interface Materials

Carbon Fiber from Polyethylene

Current applications of 1,3-propanediol (Bio-PDO):

The Story of Sorona®

Sorona® is made, in part, with annually renewable plant-based ingredients

DuPont Tate & Lyle Susterra® Propanediol DuPont Tate & Lyle Zemea® renewably sourced propanediol

- Nylon market projected to grow by 5% annually driven by automotive industry.
- Proposed application of Bio-PDO: environmentally friendly nylon plasticizer
- Incumbent plasticizer: *n*-butylbenzenesulfonamide (NBBS)
 - Environmental contaminant
 - Probable neurotoxin

n-butylbenzenesulfonamide

polyethylene glycol

poly(1,3-propanediol)

poly(1,4-butanediol)

Hypothesis: Rigidity of polymer is a function of intermolecular hydrogen bonding.

- Workflows automated using Materials Studio Perl script
- Data stored within MySQL database

1) Screen x amorphous cells

S BIOVIA

2) Geometry optimization Molecular dynamics

NP

Density

Total

Non-bond

Potential

NVT

150

S BIOVIA

High-throughput virtual approach has been used to screen plasticizers.

Bio-PDO-based poly(1,3-propanediol) is effective at reducing the flex modulus of nylon6, but it not as effective as NBBS in nylon12.

Large difference in polar electrostatics between nylon12 and poly(1,3propanediol) limits compatibility.

 Condensation to the benzoate ester increases compatibility, but at the expense of reduced flex modulus.

Objective: Screen for and engineer thin films that have high thermal conductivity.

Bulk thermal conductivity

Bulk Silicon

Forcefield verification: Second Nearest Neighbor Modified Embedded Atom Potential (2NN-MEAM)

Younker,

THz

 $E = \sum_{i} \left[F_i(\overline{\rho}_i) + \frac{1}{2} \sum_{j(\neq i)} S_{ij} \phi_{ij}(R_{ij}) \right]$

Phys. Rev. B **1994**, *50*, 2221-2226 *Calphad* **2007**, *31*, 95-104

Bulk Silicon

Forcefield verification: Second Nearest Neighbor Modified Embedded Atom Potential (2NN-MEAM)

Bulk Copper

Forcefield verification: Second Nearest Neighbor Modified Embedded Atom Potential (2NN-MEAM)

 $E = \sum_{i} \left[F_i(\overline{\rho}_i) + \frac{1}{2} \sum_{j(\neq i)} S_{ij} \phi_{ij}(R_{ij}) \right]$

JETP Letters **2010**, 92, 238-243 Phys. Rev. B **2003**, 68, 144112

Younker, J. M. in preparation

Bulk Copper

Forcefield verification: Second Nearest Neighbor Modified Embedded Atom Potential (2NN-MEAM)

Bulk amorphous and crystalline polyethylene

Forcefield verification: Consistent Valence Force Field (CVFF)

Younker, J. M. in preparation

Bulk amorphous polyethylene

Forcefield verification: Consistent Valence Force Field (CVFF)

Younker, J. M. in preparation

Nucl. Instrum. Meth. Phys. Res. A 2005, 538, 686-691 Pro. Struct. Func. Gen. 1988, 4, 1-47

- * Bulk crystalline polyethylene
- * Forcefield verification: Consistent Valence Force Field (CVFF)

 $V(r) = 4\chi\epsilon [(\sigma/r)^{12} - (\sigma/r)^{6}]$

 $\varepsilon_{ij} = \mathbf{sqrt}(\varepsilon_{ii}\varepsilon_{jj})$

 $\sigma_{ii} = (\sigma_{ii} + \sigma_{ii})/2$

 $\begin{array}{l} \epsilon_{\rm CL} = 409 \mbox{ meV} \\ \sigma_{\rm CL} = 2.34 \mbox{ Angstroms} \\ \epsilon_{\rm C} = 1.7 \mbox{ meV} \\ \sigma_{\rm C} = 3.88 \mbox{ Angstroms} \\ \epsilon_{\rm H} = 1.6 \mbox{ meV} \\ \sigma_{\rm H} = 2.45 \mbox{ Angstroms} \end{array}$

 $\Omega_{\rm K} \,({\rm mK/W}) = \Delta {\sf T}_{\rm interface} \, [(\kappa_{\rm Cu} \nabla {\sf T}_{\rm Cu}^{\rm L})^{-1} + 2(\kappa_{\rm PE} \nabla {\sf T}_{\rm PE})^{-1} + (\kappa_{\rm Cu} \nabla {\sf T}_{\rm Cu}^{\rm R})^{-1}$

 $\epsilon_{QJ/C} = 26.3 \text{ meV}$

 $\epsilon_{\text{QJ/H}} = 26.0 \text{ meV}$

 $\sigma_{\Omega_{u/C}}$ =3.11 Angstroms

 $\sigma_{\Omega_{1}/H} = 2.39$ Angstroms

Hypothesis: The overlap of the acoustic modes (< 20 THz) is directly correlated with thermal conductance

Younker, J. M. in preparation

Replace "most" steel components of automobiles with carbon fiber

- 10X stronger than steel with 1/4 the weight
- Reduce vehicle weight by 40% and improve fuel efficiency by 30%

Dia	agram from H	arper Inter	national					and and and	
	1-trenter 7	the re					Ti an D		
	Spooling &	Surface	Carbonizati	ion/	Stabilization			Precursors	
	Packaging	ackaging ITreatment Graphitization \$0.61 \$0.37 \$2.32		ion I	& Oxidation				
	\$0.61			2	\$1.54 Ba		aseline Today - \$9.88 \$5.0		\$5.04
	\$0.41	\$0.33	\$1.48	3	\$0	.99 ŀ	ligh Volum	e - \$7.85	\$4.64
ſ	Precursor type	Yield (%)		\$/Ib (as- spun)	Melt- spinn	Best achieved properties		Problem	
		Theore tical	Practical		able	Strength (KSI)	Modulus (MSI)		
	Conventional PAN	68	45-50	>4	No	500-900	30-65	High cost	t I
	Textile PAN*	~ 68	45-50	1-3	No	300-400+	30	High variation in properties	
	Lignin*	62-67	40-50	0.40 - 0.70	Yes	160	15	Fiber handling, low strength & slow stabilization step	
	Polyolefin**	86	65-80	0.35 - 0.5	Yes	380	30	Slow stabilization (sulfonation) step	

"Ford--Dow Partnership Linked to Carbon Fiber Research at ORNL," *Innovations in Manufacturing*, DOE, 2012. "Green Car Congress," October 12, 2012.

> Diagram courtesy of Harper International, Lancaster, NY. Table courtesy of Amit Naskar, ORNL.

$$\kappa(t) = \kappa(T) \frac{k_{\rm B}T}{h} \frac{Q_{\rm TS}(T)}{Q_{\rm A}(T)} e^{-\Delta E/RT}$$

 ΔE : zero-point corrected activation barrier Q: partition functions κ : Wigner tunneling correction

Anharmonic effects incorporated for low frequency modes up to 110 cm⁻¹ (Python scripted)

Second-order rate constants calculated assuming thermodynamic control: $k_i' = k_i K_{eq}$

59.4 В Α OH 34.1 49.5 SO₂ 28. 27.6 27.5 26.1 cis 21.1 H₂SO₃ concerted pathways 20.7 H₂O 17.4 trans SO₂ HOSO₂ cis 14.9 13.9 11.9 10.6 intermediate H₂SO₃ 9.4 6.7 H₂O [B] [C] [A] 3.4 0.4 0.8 SO₂ 0.0 0.0 \+H₂O -0.5 -0.4 -2.5 radical pathways -3}5 22 ×H20 -3.1 +HOSO. -10.9 -9.1 -16.8 ----- radical intermediate intermediate -19.3 ·······HOSO₂ decomposition -21.5 H_2O $- \cdot - \cdot H_2O$ -catalyzed HOSO₂ decomposition $-H_2SO_3$ decomposition $-H_2O$ -catalyzed H_2SO_3 decomposition -32.6 Pre TS Post Pre TS Ρ Post R R Ρ

Calculating rate constants according to Transition State Theory

59.4 В Α OH 34.1 49.5 SO₂ 28. 27.6 27.5 26.1 cis 21.1 H₂SO₃ concerted pathways 20.7 H₂O 17.4 trans SO₂ HOSO₂ cis 14.9 13.9 11.9 10.6 intermediate H₂SO₃ 9.4 6.7 H₂O [B] [C] [A] 3.4 0.4SO₂ 0.8 0.0 0.0 ****+H₂O −0.5 -0.4 -2.5 radical pathways -3\5 22 *1420 -3.1 +HOSO. -10.9 -9.1 -16.8 ----- radical intermediate intermediate -19.3 ·······HOSO₂ decomposition -21.5 H_2O $- \cdot - \cdot H_2O$ -catalyzed HOSO₂ decomposition $-H_2SO_3$ decomposition $-H_2O$ -catalyzed H_2SO_3 decomposition -32.6 Pre TS Post Pre TS Ρ Post R R Ρ

Calculating rate constants according to Transition State Theory

Calculating rate constants according to Transition State Theory

59.4 В Α OH 34.1 49.5 SO₂ 28. 27.6 27.5 26.1 cis 21.1 H₂SO₃ concerted pathways 20.7 H₂O 17.4 trans SO₂ HOSO₂ cis 14.9 13.9 11.9 10.6 intermediate H₂SO₃ 9.4 6.7 H₂O [B] [C] [A] 3.4 0.4 SO₂ 0.0 \+H₂O -0.5 -0.4 -2.5 radical pathways -3}5 22 ×H20 -3.1 -10.9 losu -9.1 -16.8 ----- radical intermediate intermediate -19.3 ------ HOSO₂ decomposition -21.5 H_2O $- \cdot - \cdot H_2O$ -catalyzed HOSO₂ decomposition $-H_2SO_3$ decomposition $-H_2O$ -catalyzed H_2SO_3 decomposition Pre TS Post Pre TS Post R Ρ R Ρ

Calculating rate constants according to Transition State Theory

59.4 В Α OH 34.1 49.5 SO₂ 27.6 26.1 cis 21.1 H₂SO₃ concerted pathways 20.7 H₂O 17.4 trans SO₂ HOSO₂ cis 14.9 13.9 11.9 10.6 - intermediate H₂SO₃ 6.7 9.4 H₂O [B] [C] [A] 3.4 0.4 0.8 SO₂ 0.0 0.0 +H₂O -0.5 -0.4 -2.5 radical pathways -3\5 22 -3.1 +HOSO -10.9 -9.1 -16.8 - radical intermediate intermediate -19.3 ------ HOSO₂ decomposition -21.5 H_2O $- \cdot H_2O$ -catalyzed HOSO₂ decomposition $-H_2SO_3$ decomposition $-H_2O$ -catalyzed H_2SO_3 decomposition -32.6 Pre TS Post Pre TS R R Post Ρ Ρ

Calculating rate constants according to Transition State Theory

Calculating rate constants according to Transition State Theory

59.4 В Α OH 34.1 49.5 SO₂ 28. 27.6 27.5 26.1 cis 21.1 H₂SO₃ concerted pathways 20.7 H₂O 17.4 trans SO₂ HOSO₂ cis 14.9 13.9 11.9 10.6 intermediate H₂SO₃ 9.4 6.7 H₂O [B] [C] [A] 3.4 0.4 SO₂ 0.8 0.0 0.0 \+H₂O -0.5 -0.4 -2.5 radical pathways -3}5 22 *1420 -3.1 -10.9 osu -9.1 -16.8 ----- radical intermediate intermediate ·······HOSO₂ decomposition -19.3 -21.5 H_2O $- \cdot - \cdot H_2O$ -catalyzed HOSO₂ decomposition $-H_2SO_3$ decomposition $-H_2O$ -catalyzed H_2SO_3 decomposition -32.6 Pre TS Post Pre TS Ρ Post R R Ρ

Calculating rate constants according to Transition State Theory

Integrate rate equations using kinetic Monte Carlo

- Thermodynamically, both the elimination and radical mechanisms result in an overall similar change in energy (~27 kcal/mol).
- Kinetically, the radical mechanism is the preferred pathway at lower temperatures.
- The presence of radicals is supported by experimentally observed alkane cleavage.

ACKNOWLEDGEMENTS

DuPont

- Kerwin D. Dobbs
- Hari B. Sunkara
- Jeffrey Meth
- Keith Hutchinson
- Numerous Others

BioVia

- Nick Reynolds
- Jian-Jie Liang

- Oak Ridge National Laboratory
 - Ariana Beste
 - * A. C. Buchanan III
 - Amit K. Naskar
 - Tomonori Saito
 - Edoardo Apra (Pacific Northwest National Laboratory)