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What is Enhanced Oil Recovery?

 Enhanced oil recovery (EOR) — oil recovery by injection of
gases or chemicals and/or thermal energy into the reservoir

e Chemical enhanced oil recovery (CEOR) utilizes a
surfactant/polymer combination to liberate and sweep oil
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Masters Thesis Objective

e Goal: Reservoir characterization

— Provide an accurate and quantitative model for reservoir
architecture, connectivity, and flow properties such as
porosity, permeability, and fluid saturations as it relates
to the mineralogy and chemistry of the reservoir.



My Research Tools

— Sedimentology / Petrography
— Quantitative powder X-ray diffraction (QPXRD)
— Fourier transform infrared analysis (FTIR)
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tology/Petrography

Detailed analyses of Tar
Springs Formation reservoir
cores from Rock Hill reservoir
and surrounding reservoirs

8 new cores (BLUE) accounting
>300 ft!
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Core Sedimentology/Petrography




Core Sedimentology/Petrography

11 reservoir cores of the Tar Springs Formation were provided by Pioneer QOil
Company (~405 feet total)

Cores can be broken down into 5 distinct lithofacies with unique physical/chemical
properties:
— F1: fine- to medium-grained, horizontally-stratified sandstone with consistent porosity
but large permeability variations

— F2: very fine to fine-grained, flaser-bedded sandstone with consistent porosity and
permeability

— F3: very fine-grained, wavy-bedded sandstone with reduced porosity and low
permeability

— FA4: very fine-grained sandy mudstone with low porosity and permeability
— F5: fine-grained sandstone with calcite cement that occludes all porosity



F1: Horizontally-stratified sandstone

e Porosity: 20.5%; Permeability: 751 mD



Core Sedimentology/Petrography

e Rock Hill reservoir cores can be broken down into 5 distinct lithofacies with unique
physical/chemical properties:
— F1: fine- to medium-grained, horizontally-stratified sandstone with large porosity and
permeability variations

— F2:very fine to fine-grained, flaser-bedded sandstone with consistent porosity and
permeability

— F3: very fine-grained, wavy-bedded sandstone with reduced porosity and low
permeability

— FA4: very fine-grained sandy mudstone with low porosity and permeability
— F5: fine-grained sandstone with calcite cement that occludes all porosity



F2 — Flaser-bedded sandstone

201 mD

Permeability

4

: 16.6%

e Porosity



Core Sedimentology/Petrography

e Rock Hill reservoir cores can be broken down into 5 distinct lithofacies with unique
physical/chemical properties:
— F1: fine- to medium-grained, horizontally-stratified sandstone with large porosity and
permeability variations

— F2:very fine to fine-grained, flaser-bedded sandstone with consistent porosity and
permeability

— F3: very fine-grained, wavy-bedded sandstone with reduced porosity and low
permeability

— FA4: very fine-grained sandy mudstone with low porosity and permeability
— F5: fine-grained sandstone with calcite cement that occludes all porosity



F3 — Wavy-bedded sandstone

e Porosity: 10.9%; Permeability: 33 mD



Core Sedimentology/Petrography

e Rock Hill reservoir cores can be broken down into 5 distinct lithofacies with unique
physical/chemical properties:
— F1: fine- to medium-grained, horizontally-stratified sandstone with large porosity and
permeability variations

— F2:very fine to fine-grained, flaser-bedded sandstone with consistent porosity and
permeability

— F3: very fine-grained, wavy-bedded sandstone with reduced porosity and low
permeability

— F4: very fine-grained sandy mudstone with low porosity and permeability
— F5: fine-grained sandstone with calcite cement that occludes all porosity



F4 — Sandy mudstone

e Porosity: 12.1%; Permeability: 30 mD



Core Sedimentology/Petrography

e Rock Hill reservoir cores can be broken down into 5 distinct lithofacies with unique
physical/chemical properties:
— F1: fine- to medium-grained, horizontally-stratified sandstone with large porosity and
permeability variations

— F2:very fine to fine-grained, flaser-bedded sandstone with consistent porosity and
permeability

— F3: very fine-grained, wavy-bedded sandstone with reduced porosity and low
permeability

— FA4: very fine-grained sandy mudstone with low porosity and permeability
— F5: fine-grained sandstone with calcite cement that occludes all porosity



F5 — Calcite-cemented sandstone
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e Porosity: 12.1%; Permeability: 39.5 mD
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. Field Work
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e 4 outcrop locations in
L southern Indiana and
northern Kentucky

e Builds 3D framework that ties
into reservoir cores
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Field Work




Field Work

* Helps construct a 3D geological framework
(lateral continuity, flow barriers) which can be
utilized for reservoir models
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New Tar Springs Reservoir Cores
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New Tar Springs Reservoir Cores

e Located in both Indiana and Kentucky (>300 ft of core material)




Indiana Geological Survey Cores
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Indiana Geological Survey Cores

e All express the exact lithofacies as the reservoir cores, with additional
presence of clay-rich paleosol horizons and better preserved bioturbation




L. Mississippian Paleogeography
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Modern Analog: Cook Inlet, AK
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Tidal Bore Energies
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Tar Springs Formation
Depositional Model
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XRD of Core T-1

e Kaolinite appears to have primary impact on porosity and permeability
degradation (carbonate cement = secondary impact)
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XRD of Core T-2

* Kaolinite/carbonate have detrimental impact on porosity and permeability
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Fine-scale XRD
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Chlorite
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Kaolinite
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Ongoing Work:
Integration of Datasets

FT-IR: Used to confirm mineralogy but also ID and quantify non-crystalline
phases/volatiles
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Ongoing Work:
Integration of Datasets

TGA: Measures volatile mass loss as a function of temperature
— Useful in determining oil loss and oil saturation
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Ongoing Work: Post-Coreflood Forensics

W i

INJECTION ™= == === mmm==] pRODUCTION

il

~2cm

1.005 ~ ~——— Normalized Mass Curve 90002
1'000_“ r——\ Derivative Thermogravimetric (DTG) Curve ] -
—— ‘ \\ - 0.0001
§ 0.990 \\
\
i 1 ',‘I, -I M i Ir' 0 = m
T 0985 et L T e
"N 1 N *y ﬁll'w' y | e ©
:(_u 0.980 - \"“ ') | " Iiul' A “'J“ ] 'é
d E | L ¢ | mF i 8
D ST - -0.0001
S 09754 W IN
] . \
- 0970 T ‘ it
~ J - -0.0002
2cm 0.965 - Ol Loss \ -
o -~ vl g
0.960 - b o gt
; . ; : T -0.0003
0 500 1000

Temperature (°C)



Summary

Combined methodologies in this study...

e 1. Determine the physical and chemical variabilities of
Tar Springs Formation as they relate to mineralogy

e 2. Aid in constructing reservoir geometries and
connectivity trends that feed into model simulations

e 3. Provide useful post-coreflood analysis data
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