Effect of gangues on flotation of valuable phosphate and silicate minerals: Characterization and modeling studies

SATHISH PONNURANGAM CHEMICAL AND PETROLEUM ENGINEERING UNIVERSITY OF CALGARY

Effect of Particle Characteristics on Fatty Acid Flotation of Florida Phosphate Rock

2

SATHISH PONNURANGAM, UNIVERSITY OF CALGARY

IRINA CHERNYSHOVA, PARTHA PATRA, PARAG PUROHIT, AND PONISSERIL SOMASUNDARAN, *COLUMBIA UNIVERSITY*

HASSAN EL-SHALL – UNIVERSITY OF FLORIDA

JAN D. MILLER – UNIVERSITY OF UTAH

Phosphate minerals

82% - Fertilizer, 18% - industrial use

- Sedimentary phosphates (80% of global supply)
- Igneous phosphates (15-20 % of global supply)
- Biogenic phosphates (tiny fraction of global supply)

Source: UNIDO and IFDC 1998; Zapata and Roy 2004; Abouzeid 2008.

Beneficiation of Phosphate Ore edited by Kawatra, and Carlson, 2013, SME

Phosphate mining

Peak phosphate: 2033-2034??

- Conservative phosphate reserves 15,000 million metric tons (mmt)
- Yearly production approaching 200 mmt

Cost of processing phosphate ore is continuously increasing

- Decreasing grade of the phosphate ore
 - Open pit mining moving overburden, which is several times over the ore mined
 - More number of processing steps and expensive technology
 - Increased consumption of water and energy for separation

Amount of phosphate and other valuables lost in tailings

5-20 % of phosphate is lost during processing

Phosphate rock composition

```
    Francolite (mostly in sedimentary deposits)
    Ca<sub>10-x-y</sub>Na<sub>x</sub>Mg<sub>y</sub>(PO<sub>4</sub>)<sub>6-z</sub>(CO<sub>3</sub>)<sub>z</sub>F<sub>0.4z</sub>F<sub>2</sub>
```

Apatite (mostly in igneous deposits) • fluorapatite (Ca₁₀(PO₄)₆F₂) • chlorapatite (Ca₁₀(PO₄)₆(Cl)₂) • hydroxyapatite (Ca₁₀(PO₄)₆(OH)₂)

Beneficiation of Phosphate Ore edited by Kawatra, and Carlson, 2013, SME

Typical processing circuit

$$Ca_{5}(PO_{4})_{3}F_{(s)}+5H_{2}SO_{4(l)}+10H_{2}O_{(l)} \rightarrow 5(CaSO_{4}\cdot 2H_{2}O)_{(s)}$$
$$+HF_{(aq)}+3H_{3}PO_{4(aq)}$$

Figure 1.1 Simplified process flow diagram for production of phosphoric acid

Beneficiation of Phosphate Ore edited by Kawatra, and Carlson, 2013, SME

l

Nature of gangue minerals

Siliceous vs. Calcareous, dolomitic phosphate rocks

Siliceous impurities

- Clays (montmorillonite (Si₈Al_{3.5}Mg_{0.5}O₂₀(OH)₄), palygorskite ((Mg,Al)₂Si₄O₁₀(OH) · 4(H₂O)), and kaolinite (Al₄(Si₄O₁₀)(OH)₈))
 - Interferes in flotation through slime formation
 - Removed by washer screens and hydrocyclones
- Quartz
 - Increases the volume of transport and erosion of equipment
 - Removed by 2-stage froth flotation

Dolomite and calcite impurities

- Increased H₂SO₄ consumption and increased suspension viscosity
- Difficult to separate economically still a open problem

Froth flotation – separation of phosphate from gangues

Beneficiation of Phosphate Ore edited by Kawatra, and Carlson, 2013, SME

Florida phosphate rock separation issues

Variation in feed quality

Beneficiation of Phosphate Ore edited by Kawatra, and Carlson, 2013, SME World Phosphate Rock Reserves and Resources, IFDC, 2010 Effect of Particle Characteristics on Fatty Acid Flotation of Florida Phosphate Rock, Florida Institute of Phosphate Research, 2010

Samples from different ore deposits from Florida

Table 1. Flotation Results of Received Samples.

Sample	Feed	Concentrate	Recovery (%)	Flotation
	BPL (%)	BPL (%)		Characteristics
CF East Pit	12.15	46.19	96.7	Good
CF West Pit	9.88	43.62	96.6	Good
CF Combined	16.94	52.42	96.3	Good
SFM	14.44	49.88	95.2	Good
3057 Split 2	12.88	64.62	86.4	Good
464 Split 1	27.65	36.79	76.5	Bad*
464 Split 2	31.93	57.69	61.0	Bad
1862 Split 2	26.72	48.72	25.6	Bad
1862 Split 2	26.67	46.33	66.6	Bad

* The flotation behavior is classified as bad if the recovery is below 80%.

Florida phosphate rock recovery issues

Effect of Particle Characteristics on Fatty Acid Flotation of Florida Phosphate Rock, Florida Institute of Phosphate Research, 2010

Surface modification?

Adsorption and zeta potential experiments

Adsorption Density of Sodium Oleate on Both Good and Bad Feed Samples of FCO, CF Rock Phosphate Sources at Natural pH.

Adsorption Density of Sodium Oleate on Both Good (CF Combined) and Bad (3057 and FCO Bad) Feed Samples at pH 9.2.

- Reason for relatively poorer adsorption of oleate on Bad-feeds:
 - Unliberated of fine phosphates from quartz gangues?
 - Coating of clay slimes on phosphate surfaces
 - Coating of gypsum and/or interference of calcium in surfactant adsorption

Electrokinetics: Zeta potentials

Zeta Potential of Phosphate Samples (FCO 5-07, 1862-S2 and CF Combined Feed).

Bad-feed: surface presence of quartz or siliceous minerals (either as inclusions or as slimes)

Quartz vs. Clays: EDS-Analysis

Which impurity is associated with the rejection of phosphates in the tailings of Good- or Bad-feeds?

EDS analysis of phosphate rich particles in Bad-feeds

- In tailings
 - phosphate particles have alumonisilicate inclusions rather than quartz
 - quartz fine particles have minor inclusions of phosphate

XRD of Bad samples - Fine vs. coarse tailing particles

F1 = Francolite CaF(Ca,C)₄[(P,C)(O,OH,F)₄]₃ JCPDS 02-0833 F2 = Carbonatehydroxyapatite Ca₁₀(PO₄)₃(CO₃)(OH)₂ JCPDS 19-0272 or Calcium Carbonate Hydrate JCPDS 83-1923 P = Palygorskite MgAlSi₄O₁₀(OH).4H₂O JCPDS 29-0855; 31-0783 C = Cordierite Mg5(Si,Al)8O₂0(OH)₂.8H₂O JCPDS 86-1550; 85-1722 Ca1 = Calcium Aluminum Silicate Hydrate CaAl₂Si₂O₈.4H₂O JCPDS 20-0452 Ca2 = Calcium Aluminum Silicate Hydrate CaAl₂Si₂O₈.4H₂O JCPDS 39-1373 Ca3 = Calcium Aluminum Silicate Hydrate CaAl₂Si₂O₈.4H₂O JCPDS 13-0495 Si = Quartz D = Dolomite CaMg(CO₃)₂ JCPDS 79-1346

Phosphate phases: mostly Francolite and some carbonate hydroxyapatite

Quartz bulk inclusion in finer particles

Aluminosilicate bulk inclusions dominate coarser phosphate particles

Some phosphate lost in quartz particles

Vibrational Spectroscopy - concentrates

Stretching bands of PO₄³⁻ tetrahedra: ~ 1030 cm⁻¹ and ~970 cm⁻¹ satellite

- signature of polytypes of apatite
- $^{\circ}\,$ stoichiometry and crystallinity of apatite ightarrow position and width of this band

Isomorphically substituted carbonate bands: 1456, 1425, and 865 cm⁻¹

Figure 26. ATR Spectra of Three Coarse Black Particles Picked from the Concentrate of CF East Sample. Insert shows enlarged region due to stretching vibrations of the OH groups.

 Table 2. Major Components of the PO43. Band (Pleshko and others 1991).

Band Position, cm ⁻¹	Assignment		
960	v1PO4 ³⁻		
996	PO ₄ ³⁻ in apatitic environment		
1020	Persistence of vacancies; nonstoichiometric apatites containing		
1032	PO ₄ ³ in stoichiometric apatites		
1034	Type B carbonate apatites; hydroxyapatite		
1056	Bands corresponding to the T2 vibrational modes of apatite		
1075	Bands corresponding to the T2 vibrational modes of apatite		
1092	Stoichiometric apatites		
1109	Poorly crystalline apatites		
1123	HPO4 ²⁻		
1143	Apatites containing HPO42-		

Comparison of Good and Bad feed (Conc vs. tailings)

Carbonate substitution ruled out as reason for poor flotation performance

- Carbonate substitution: no difference between conc. & tailings
- No systematic difference in width and position of PO₄-³ band

Analysis of non-phosphate bands

Figure 26. ATR Spectra of Three Coarse Black Particles Picked from the Concentrate of CF East Sample. Insert shows enlarged region due to stretching vibrations of the OH groups.

Absorption bands at ~2900-3000 cm⁻ ¹ due to vCH vibrations of adsorbed oleate

- Present in all concentrate phosphate particles but not on tailing particles
- What suppress oleate adsorption on tailings phosphate particles
 - acidic surface Al–OH–Al and SiOH groups and alumosilicate inclusions

No noticeable difference in amount of dolomite and gypsum in tailings of bad or good samples

Somasundaran et. al., Similarities and dissimilarities in Florida phosphate ore types, IMPC, 2010 Effect of Particle Characteristics on Fatty Acid Flotation of Florida Phosphate Rock, Florida Institute of Phosphate Research, 2010

Conclusions

Isomorphically substituted carbonate groups typical of francolite

Descriptor of flotation performance

- Carbonate substitution is not reason for poor flotation performance
- Dolomite or gypsum are not the culprits
- Fine phosphate tailing particles have surface silanols (from silica impurities)
- Coarse phosphate tailing particles have silicates
- Absorption bands at ~2900-3000 cm⁻¹ due to vCH vibrations of adsorbed oleate
 - Present in all concentrate phosphate particles but not on tailing particles

Oleate adsorption suppressed on tailings phosphate particles

acidic surface Al–OH–Al and SiOH groups and alumosilicate inclusions

Key factors for poor flotation performance - slimes formation on surface and silicate inclusions in bulk

Tackling slimes formation – polymer flocculation of slime before flotation

A molecular dynamics study of the interaction of oleate and dodecylammonium chloride surfactants with complex aluminosilicate minerals

SATHISH PONNURANGAM, UNIVERSITY OF CALGARY, CANADA

BEENA RAI, JYOTSNA TANWAR, PRADIP, TATA RESEARCH DEVELOPMENT AND DESIGN CENTER, INDIA K.S. MOON, *VIRGINIA TECH, USA* D.W. FUERSTENAU, *UNIVERSITY OF BERKELEY, USA*

Lithium minerals

Batteries - 39%; ceramics & glass - 30%; lubricating greases - 8%; & other uses - 22%

- Chile & Argentina major producer of lithium from brine lakes
- Lithium carbonate and chloride from brine lakes and salt pans
- From complex silicate mineral
 - Spodumene [LiAl(SiO₃)₂]
 - lepidolite, [K₂Li₄Al₂F₄Si₈O₂₂]

https://minerals.usgs.gov/minerals/pubs/commodity/lithium/mcs-2017-lithi.pdf https://minerals.usgs.gov/minerals/pubs/commodity/lithium/myb1-2014-lithi.pdf

Spodumene minerology

Spodumene ore occurs along with other silicate gangues and quartz

- For example, ore deposits from Kings Mountain, North Carolina contain by wt.
 - Spodumene [LiAl(SiO₃)₂] -20%,
 - Muscovite [K₂Al₄(Al₂Si₆O₂₀)(OH)₄] -7%,
 - $^{\circ}$ Feldspar [KAlSi₃O₈] 43%
 - Quartz [SiO₂]– 30%

Spodumene is separated from other silicates using fatty acids (sodium oleate)

Prior literature

Moon and Fuerstenau (Int. J. Miner. Process. 72 (2003) 11)

- 1. Chemisorption of oleate on aluminum sites of the spodumene (1 1 0) plane as opposed to feldspar and muscovite
- 2. Oleate preferentially adsorbs on spodumene's cleavage plane (1 1 0), as opposed to the nominal (0 0 1) plane Contact angle on (1 1 0) > (0 0 1)
 - two unsatisfied co-ordinations at Al sites on the (1 1 0) plane ideal for oleate chemisorption.
 - Only one broken bond at Al sites on the (0 0 1) surface

Rai et. al, Journal of Colloid and Interface Science 362 (2011) 510-516

Prior literature

3. Uniqueness of spodumene structure as opposed to muscovite and feldspar is confirmed with jadeite, NaAl(SiO₃)₂, which also chemisorbs oleate surfactant

Goal

Can we theoretically capture these specific interactions using interaction energies evaluated through molecular dynamics simulations?

Oleate interaction with Spodumene (110) and (001)

Rai et. al, Journal of Colloid and Interface Science 362 (2011) 510-516

25

Spodumene vs. muscovite vs. feldspar

Spodumene (110)

Feldspar (1 1 0)

Muscovite (1 1 0)

A comparison of computed interaction energies (kcal/mol) of oleate and water molecules on different aluminosilicate mineral surfaces [24,25,53,54].

Mineral	Molecule		
	Oleate	Water	
Spodumene (1 1 0)	-235.8	-19.7	
Anorthite (001)	-141.9	-3.7	
Muscovite (001)	127.0	-3.4	

Rai et. al, Journal of Colloid and Interface Science 362 (2011) 510-516

Similar recoveries of spodumene and jadeite

Rai et. al, Journal of Colloid and Interface Science 362 (2011) 510–516

Conclusions

- **1.** Oleate selectivity to spodumene is theoretical captured (matching the experimental observations)
- 2. A predictive methodology developed using
 - Combination of interaction energies from molecular dynamics simulations and an analysis of surface geometric features and surfactant packing

Acknowledgements

- Florida Institute of Phosphate Research
- **National Science Foundation**
- Tata Research Development and Design Centre
- **University of Calgary**

Thank you!

Electrokinetics: Zeta potentials

Zeta Potential of Phosphate Samples (FCO 5-07, 1862-S2 and CF Combined Feed).

- Bad-feed: surface presence of quartz or siliceous minerals (either as inclusions or as slimes)
- Tails of Bad-feed: less siliceous (because of reporting of phosphate minerals)

Concentrates: both good and bad feeds similar or inconclusive

Somasundaran et. al., Similarities and dissimilarities in Florida phosphate ore types, IMPC, 2010

Zeta Potential of Phosphate Samples (FCO Bad, 1862-S2, and CF Combined Tails).

