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0il sands development contributes elements toxic
at low concentrations to the Athabasca River
and its tributaries
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Sphagnum Mosses from 21 Ombrotrophic Bogs in the Athabasca
Bituminous Sands Region Show No Significant Atmospheric
Contamination of “Heavy Metals”

William Shotyk,*" Rene Belland," John Duke,* Heike Kempter,* Michael Krachler,' Tommy Noernberg,"
Rick Pelletier,” Melanie A. Vile," Kelman Wieder,® Claudio Zaccone,”” and Shuangquan Zhang™!

Study Sites

Study Sites

¢ Lakes (and
watersheds) span a
range of
environmental
gradients

« >15years of lake
water monitoring data
¢ Grouped according to
distance from AR6
— near-field (<20

km)
— mid-field (20-50 ~ 2
km) RAU!HI

— far-field (>50 km)




Analyses| Dating & Geochemistry

¢ 3sediment cores
collected per lake (“A, B,
)

e Cores extruded at 0.5-cm
intervals from 0-20 cm
depth; 1-cm intervals
below

e 210ph & 137Cs dating to
relate depth to time

* n=46 elements by ICPMS

¢ PAHs, Hg, Chl-a, %C, %N,
S13C, 815N, diatoms, black
carbon
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| 3 key elements
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Atmospheric Deposition of Mercury and Methylmercury to
Landscapes and Waterbodies of the Athabasca Oil Sands Region
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| Concentration and flux

~ Vanadium ~ Aluminum

Concentration (ug g)
EERE R R

¢ Clear relationship between V and Al in far-field sites

¢ Temporal and spatial variability in both concentration

and flux among and within near-, mid-, and far-field
sites

* Clearincrease in near-field sites independent of Al




| Enrichment factors & flux ratios

e EF= (TE/AI)l / (TE/AI)pre_lgOO
0 A standard way to normalize for the

erosional input of inorganic (mineral)
matter

* Fluxratio = (TEq,); / Av&(TEq,,)pre-1900

O Provides a measure of flux increase
relative to each site-specific background
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| Enrichment factors & flux ratios

' Vanadium

e : * EF and flux ratio do not
. i always agree... integrate
different processes

* Early increase in near-field

Jriiteeneet.. o i V flux ratios likely due to
aivanadium | | A lithogenic input
14 Fluxratio

n \ * Clear post-1960 increase
: in near-field sites

< A % . * Post-1980s decrease to

s ... ..+ nearfieldsites

today: 5x

[V]

than other sources 3
Landis et al. 2012




| Enrichment factors & flux ratios

* Similar late 19t
century and early 20t
century increases in
flux

e Early increasein EF in
near- and mid-field
sites, ~5-fold in both
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* Regional '
enhancementabove |, = -
global Pb pollution 34 WS

| Enrichment factors & flux ratios

.. Mercury .
L “:..". e Secular 20" century 2-
AE to 3-fold increase
Sroaytis among sites
- "+ No evidence for oil
Mercary % .y sands impact

i *« Similar to lake sediment
3 el M cores from across North
‘ . America (orevnick et al. in press)
1.

| Integrating archives

* Increase in vanadium enrichment evident
closer to open-pit mines regardless of media
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Conclusions | 1

¢ Clear spatial pattern of “heavy metal”
contamination in the Athabasca oil sands

region
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Conclusions | 2
¢ Regional impact extends beyond those
elements that are enriched in bitumen (i.e., V)

¢ A change in emission sources through time
from stacks to fugative dust

Questions?
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Gregoire Lake
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PCA | Gregoire and L60 excluded
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TICLE

Evidence of discharging saline formation water to the Athabasca
River in the oil sands mining region, northern Alberta
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