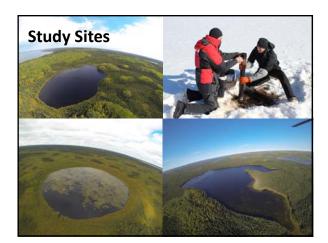
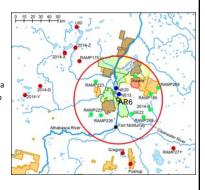

Lake sediment archives of trace metal deposition in the oil sands Colin A Cooke Alberta Environment and Parks & University of Alberta Jane L Kirk Derek C G Muir Xiaowa Wang Marlene Evans Amber Gleason Jonathan Keating

Oil sands development contributes elements toxic at low concentrations to the Athabasca River and its tributaries

Erin N. Kelly^a, David W. Schindler^{a,1}, Peter V. Hodson^b, Jeffrey W. Short^c, Roseanna Radmanovich^a, and Charlene C. Nielsen^a

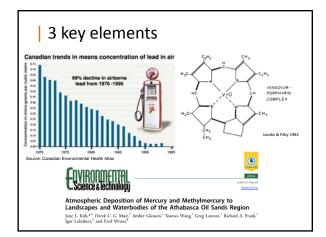

¹Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9; ^bDepartr Queen's University, Kingston, OM, Canada K7I, 3NG; and ^cOceana, Juneau, AK 99801 Contributed by David W. Schindler, July 2, 2010 (sent for review March 2, 2010) PNAS 2010

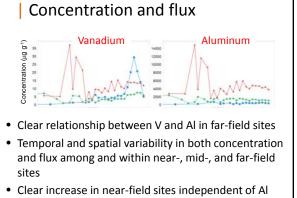
Artic|e os.acs.org/est


Sphagnum Mosses from 21 Ombrotrophic Bogs in the Athabasca Bituminous Sands Region Show No Significant Atmospheric Contamination of "Heavy Metals"

William Shotyk,** Rene Belland,* John Duke, Heike Kempter, Michael Krachler, Tommy Noemberg, Rick Pelletier, Melanie A. Vile, Kelman Wieder, Claudio Zaccone, Wand Shuangquan Zhang,* 1

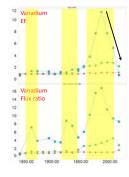
Study Sites


- Lakes (and watersheds) span a range of environmental gradients
- >15 years of lake
- water monitoring data Grouped according to
 - distance from AR6 - near-field (<20 km)
 - mid-field (20-50 km)
 - far-field (>50 km)



Analyses Dating & Geochemistry

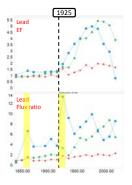
- 3 sediment cores collected per lake ("A, B, C")
- Cores extruded at 0.5-cm intervals from 0-20 cm depth; 1-cm intervals below
- ²¹⁰Pb & ¹³⁷Cs dating to relate depth to time
- *n*=46 elements by ICPMS
- PAHs, Hg, Chl-a, %C, %N, δ^{13} C, δ^{15} N, diatoms, black carbon



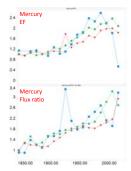
| Enrichment factors & flux ratios

- EF = $(TE/AI)_i / (TE/AI)_{pre-1900}$
 - A standard way to normalize for the erosional input of inorganic (mineral) matter
- Flux ratio = $(TE_{flux})_i / Avg(TE_{flux})_{pre-1900}$
 - o Provides a measure of flux increase relative to each site-specific background

| Enrichment factors & flux ratios

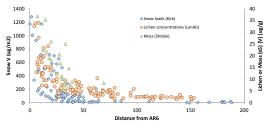


- EF and flux ratio do not always agree... integrate different processes
- Early increase in near-field V flux ratios likely due to lithogenic input
- Clear post-1960 increase in near-field sites
- Post-1980s decrease to near-field sites



| Enrichment factors & flux ratios

- Similar late 19th century and early 20th century increases in flux
- Early increase in EF in near- and mid-field sites, ~5-fold in both
- Regional enhancement above global Pb pollution


| Enrichment factors & flux ratios

- Secular 20th century 2to 3-fold increase among sites
- No evidence for oil sands impact
- Similar to lake sediment cores from across North America (Drevnick et al. in press)

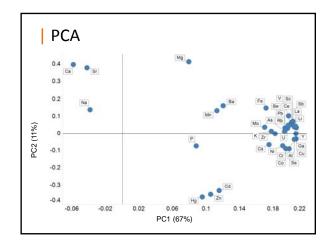
Integrating archives

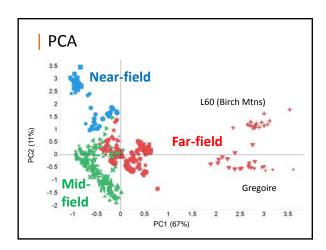
 Increase in vanadium enrichment evident closer to open-pit mines regardless of media

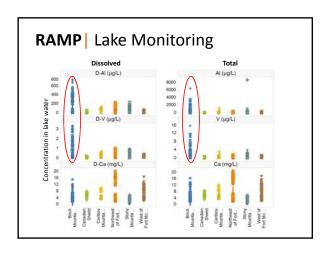
Landis et al. 2012; Kirk et al. 2014; Shotyk et al. 2014

Conclusions | 1

 Clear spatial pattern of "heavy metal" contamination in the Athabasca oil sands region




Conclusions | 2


- Regional impact extends beyond those elements that are enriched in bitumen (i.e., V)
- A change in emission sources through time from stacks to fugative dust

