

SIP, Diameter, GTP & DNS

18th May 2016

Peter Nas, Sr Solution Architect Sales

Agenda

Key Service Provider trends

F5's Signaling Strategy for SPs DNS, GTP, Diameter, SIP

IMS-VoLTE Security

VoWifi Security

Signaling Security

Broad Market Trends

Devices & Connections

Smartphones, Applications, Internet of Things

- Scale and performance
- $IPv4 \rightarrow IPv6$ transitions
- DDoS mitigation

Exponential Growth

Of Data and Signaling Traffic

- Scale and performance
- Control plane and data plane
- Signaling overload protection

Increasing Security

Evolving and Increasing Threats and Attacks

• Scale and performance

- L4-L7 security
- Programmability and flexibility

Signaling trends

VoWi-Fi Market Scenario and Forecast

VoWi-Fi is going to surpass VoLTE by 2018 in terms of minutes of use

VoLTE: Very Early Days

VoLTE Forecast 2015 - 2020

Challenges Ahead For Service Providers

SCALING the Networks ... End to End SECURITY ... PROFITABLE New Services

SCALING networks

PROFITABLE new

services

End-to-End SECURITY

F5 Deployment Footprints

Simplified and Consolidated DNS

© 2016 F5 Networks DNS and DNS security extensively addressed in other session, here focus on Infrastructure

8

Infrastructure: Automatically Monitor Packet Gateways For Availability

Problem: Manually Remove Packet Gateways

- Many SPs don't monitor the PGW/GGSN from DNS
- SGSN/MME selects an APN by DNS lookup (apn.provider.com)
- DNS responds with the available PGW/GGSN
- Manually remove PGW from record list given to mobile unit

Solution: Automatically Monitor, Remove and Reload

- Higher availability of services
- Closer mapping of network capacity to required load
- Reduced overhead through overprovisioning
- Allows for capacity to be added or removed automatically

9

© 2016 F5 Networks Note: BIG-IP supports A records (common for 3G) but also SRV and NAPTR (common for 4G and IMS)

IMS: REGISTER request uses DNS

UE1 is located in a visited network, and determines the P-CSCF via the CSCF discovery procedure

GTP Traffic Management & Security

....

GPRS Tunneling Protocol (GTP)

Protocol	Transport	LTE Interfaces	Notes
GTPv2-C (Control)	2123/UDP	S11: MME-SGW, S5: SGW-PGW	Signaling to create/maintain/delete tunnels
GTP-U (User Data)	2152/UDP	S1-U: eNodeB-SGW, S5: SGW-PGW	Tunneling for customer data packets
GTP' (Prime)	3386/(TCP UDP)	Ga: CDF-CGF (Optional)	Transport CDRs from Charging Data Function (CDF) to Charging Gateway Function (CGF)
© 2016 F5 Networks			12

Roaming Security

Without Roaming, the Provider controls 100% of the network architecture, security controls, performance & customer experience.

With Roaming, the Provider loses control of security and sees just tunneled data. Traffic to/from roaming devices can impact network performance.

Hostile Attacker

Legitimate System

Security Boundary

GTP Firewall: Limit APNs, Block Ports & IP Blacklisting

Search				Source			Destination					
Rule List	Description	State	Schedule	Address/Region	Port	VLAN / Tunnel	Address/Region	Port	Protocol	iRule	Action	Logging
Roaming_Partner_1		Enabled										
Inbound_GTPv2-C		Enabled		Roaming_Partner_1_SGWs	Any	IPX	Provider_PGWs	GTPv2-C_2123	17 (UDP)	Roaming_Partner_1_APNs	Accept Decisively	Enabled
Inbound_GTP-U		Enabled		Roaming_Partner_1_SGWs	Any	IPX	Provider_PGWs	GTP-U_2152	17 (UDP)	Roaming_Blocked_Ports	Accept Decisively	Enabled
Inbound_ICMP		Enabled		Roaming_Partner_1_SGWs	Any	IPX	Provider_PGWs	Any	1 (ICMP)		Accept Decisively	Enabled
Outbound_ICMP		Enabled		Provider_PGWs	Any	Core	Roaming_Partner_1_SGWs	Any	1 (ICMP)		Accept Decisively	Enabled
Roaming_Partner_2		Enabled										
Inbound_GTPv2-C		Enabled		Roaming_Partner_2_SGWs	Any	IPX	Provider_PGWs	GTPv2-C_2123	17 (UDP)	Roaming_Partner_2_APNs	Accept Decisively	Enabled
Inbound_GTP-U		Enabled		Roaming_Partner_2_SGWs	Any	IPX	Provider_PGWs	GTP-U_2152	17 (UDP)	Roaming_IP_Blacklist	Accept Decisively	Enabled
Inbound_ICMP		Enabled		Roaming_Partner_2_SGWs	Any	IPX	Provider_PGWs	Any	1 (ICMP)		Accept Decisively	Enabled
Outbound_ICMP		Enabled		Provider_PGWs	Any	Core	Roaming_Partner_2_SGWs	Any	1 (ICMP)		Accept Decisively	Enabled
Roaming_Partner_3		Enabled										
Inbound_GTPv2-C		Enabled		Roaming_Partner_3_SGWs	Any	IPX	Provider_PGWs	GTPv2-C_2123	17 (UDP)	Roaming_Partner_3_APNs	Accept Decisively	Enabled
Inbound_GTP-U		Enabled		Roaming_Partner_3_SGWs	Any	IPX	Provider_PGWs	GTP-U_2152	17 (UDP)	Roaming_IP_Blacklist	Accept Decisively	Enabled
Inbound_ICMP		Enabled		Roaming_Partner_3_SGWs	Any	IPX	Provider_PGWs	Any	1 (ICMP)		Accept Decisively	Enabled
Outbound_ICMP		Enabled		Provider_PGWs	Any	Core	Roaming_Partner_3_SGWs	Any	1 (ICMP)		Accept Decisively	Enabled
		Enabled		Any	Any	Any	Any	Any	Any		Drop	Enabled

- APN Limiting for Create Session Requests
- Throttling per user or per roaming partner

- IP Blacklisting of Tunneled Packets
- Port Blocking of Tunneled Packets
- We can also screen on messages valid for a specifc interface, like okay for S5 but not for S8 (as per list from GSMA)

If APN does not provide enough info look into GTP traffic for MSISDN and select the right PGW for per MVNO traffic steering
 © 2016 F5 Networks

GTP Traffic Management – Case Study

- Problem Statement
 - Same APN id used for home network and MVNOs
 - But want to use dedicated PGW per MVNO
 - Result: DNS-based APN resolution procedure to find the proper PGW will not work

- Solution
 - APN-based DNS resolution points to F5 BIG-IP
 - F5 BIG-IP is provisioned with a table mapping MS-ISDN ranges to the corresponding MVNO PGW
 - F5 BIG-IP steers incoming GTP-C messages to the right PGW based on MS-ISDN ranges (by inspecting GTP-C IE attributes)

IMS-VOLTE Security like SIP, XCAP & RTP

Our vision: IMS/VoLTE Security Proxy (IVSP)

SBC Market Shares many ongoing changes

2014 Market leaders down

- Oracle, Sonus, Genband
 2015/16 Leaders: NEPs
- Huawei, Ericsson, Nokia
- Very volatile (see Nokia)

SBCs need:

- Load Balancing / scaling
- SIP normalization
- Security
- More..

SIP signaling and F5

SIP Load Balancing & SIP Routing

15

Use Case: SIP Normalization

- Problem: many different flavors of the same SIP interfaces, especially for new nodes like for IMS there will be many initial issues to connect various vendors
- Solution: Use BIGIP and F5's long experience on SIP mediation
- Use F5's flexibility and experience
- + It is not "just" a flexible engine to modify SIP messages it also how to use it

SIP Security

@ F5 Networks, Inc.

23

VoLTE: What are the Actual Vulnerabilities?

Attackers can...

- Gain free data access (VoLTE control plan not billed)
- Shut down existing access
- Subdue an ongoing call

Problems on both device & network

- Device: OS fails to limit access to VoLTE data plane
- Network: Infrastructure lacks proper controls (F5 can help here)

Figure 3: VoLTE Access control on the device side.

http://web.cs.ucla.edu/~ghtu/ccs15.pdf http://www.kb.cert.org/vuls/id/943167

Category	Attack	Victim	Description and Threat	Vulnerability			
	Free data	Operator	Adversary device gains free data access to	V1: Lack of the control-plane access control (§3.1)			
Data (§3)		_	the Internet or another mobile device.	V2: Imprudent forwarding in the network (§3.1)			
	Overbilling	Individual	Adversary injects spams to impose	V3: Abusing no billing of VoLTE signaling traffic (§3.2)			
			excessive data bill on the victim.			SIP ALG	
	Preemptive	Operator,	Adversary device gains undeserved	V1: Lack of the control-plane access control (83.1)			
	data	Individual	higher-priority data access.	v1. Eack of the control-plane access control (35.1)			
	Data DoS	Individual	Adversary shuts down the ongoing data	V4: Abusing highest-priority allocated to VoLTE control			
			access on the victim phone.	plane (§3.3)			
Voice (§4)	Muted voice	Individual	Adversary mutes an ongoing VoLTE call	V5: Insufficient data-plane access control (§4.1)			
	(DoS)		on the victim.	V6: Side-channel leakage of data-plane information (§4.1)		iDuloo	
	Enhanced	Individual	Adversary mutes the voice faster.	V5: Insufficient data-plane access control (§4.1)		irtules	
	muted voice			V7: Leakage from improper both-plane coordination (§4.2)			

Table 1: Summary of our main findings on VoLTE vulnerabilities and proof-of-concept attacks.

Example IMS & VoLTE Security Threat: SIP CallingParty spoofing Legend User Equipment Signaling (Radius) Radius Server P-CSCF I/C-CSCF IMS APN • Signaling (SIP)* SGi LAN (?) *Potential spoofed B. CLI Internet AP (t ~ ~ \leftarrow IMS APN SGW PGW ΡE eNodeB Security Internet Attackers ()?)MMTel AS Internet APN

Symptom = UE inserts spoofed CallingPartyNumber in SIP invite

note that LTE Signaling bearer is validated based on MSISDN and IMSI but if CLI in SIP invite \neq validated MSISDN the issue arises

Same for XCAP

Impact = Free calling, occur costs for authenticated user Cause = no cross check between LTE bearer and used CLI in SIP Remedy = multi-layer check* by comparing SIP with Radius for CLI

Secured (Vo)Wifi-access

Secure WiFi access

Voice over Wifi (VoWifi) – Load Balancing + Security

- Load Balancing ePDG
 - Geo-redundancy : GTM (DNS)
 - Local LB : LTM

• Securing ePDG

- Geo-location DB + whitelist
 - Generate extra revenues
- Only allow IPsec
- IP intelligence (bots, proxies)
- DDOS mitigation

- Load Balancing 3GPP AAA
 - Diameter/SCTP
- Securing Diameter SWm
 - Check on 'bad behavior'

(Vo)Wifi security, what value can F5 add?

IPsec LB (note that we don't terminate the IPsec tunnel)

• Persistence key is source IP

DNS based LB to ePDG

- Use GTP monitor to check loading of ePDG
- Also DNS based LB to PGW

Check IP source address to authorize access or not

- Like is IP from same country
- Is IP from valid 3rd party (McDonalds, Hotel, etc.) extra business benefit to include contracted companies IPs
- Optional: maximize #simultaneous calls for one UE/IP

IP-Intelligence, like

- avoid proxy while roaming (eg to pretend to be in country)
- Black/White Listing IPs

Avoid ePDG gets overloaded by unauthorized access attempts, eg roaming customers trying to access ePDG

Note that we can also load balance the Diameter SWm signaling towards the HSS/AAA and apply extra security

Summary

Signaling security

Key mobile core signaling protocols

- Diameter security, increasing need for Firewalls IPsec, (D)TLS, topology hiding, ACLs, DDoS prevention, etc. Roaming and interconnect, MVNOs, OTTs
- SIP security, like for VoLTE Interconnect
- SS7 Security*, first FWs being implemented
- DNS security
- GTP, need for GTP firewall
- HTTP, Rest API for OTT access
- Secured VoWifi access

F5 combines all the above and utilizes years of signaling experience, scaling IP and application awareness

SOLUTIONS FOR AN APPLICATION WORLD