

AESI

PRESENTED SEPTEMBER 24, 2014 BY

MATTHEW A. MILLER, PE

HOW AND WHERE DOES INFILTRATION WORK?—

- o Context: Summary of Geologic History
- o Constraints/benefits for different geologic units
- o Key geologic and groundwater flow parameters critical to site planning/engineering
- o Brief Project Example:
 - ➤ Lakewood Crossing

Reference: D. Molenaar, 1987 www.aesgeo.com

TYPICAL PUGET SOUND STRATIGRAPHY -

AESI

- o <u>Recessional outwash</u>: Bedded and sorted sand, gravel. River deposits flowing from wasting and retreating ice
- o <u>Till</u>: Unsorted mixture of clay, silt, sand, gravel, cobbles nature's concrete 5 to 30 feet thick on average. Compacted beneath ice sheet
- Advance outwash: Bedded and sorted gravel and sand at top: River deposits flowing from advancing ice; wellbedded clay and silt at base: deposits of lakes (or salt water) farther in front of the ice

PUGET SOUND AREA GEOLOGY-

AESI

In the Lowland:

- <u>Vashon till</u> is the most abundant material by surface area, but commonly a thin veneer
- Vashon advance outwash is the majority
 by volume of the Vashon-age glacial material

GeoMapNW

http://geomapnw.ess.washington.edu/index.php

www.aesgeo.com

Map Source: Geologic Map of King County Compiled by Booth, Troost, and Wisher, May 2006

RECESSIONAL OUTWASH-

AESI

Constraints:

- o Thin
 - > Removed during grading
 - > Shallow ground water
 - Downslope impacts (slope stability, springs, wetland hydrology

Benefits:

- o High permeability
- o Dispersed infiltration options

LODGEMENT TILL —

-AESI

Constraints:

- o Thin weathered horizon removed during grading
- o Very low permeability parent material
 - Good for earthen dams/berms
 - ➤ In-situ amendments not feasible
- o Ground water mounding
- o 1 to 1-1/2 inches/month of recharge through till
- $\circ~0.001$ to 0.002 inches/hour

STORM WATER FLOW ON TILL SITE-

RECESSIONAL DEPOSIT, UNDERLAIN BY TILL-

ADVANCE OUTWASH

AES

o <u>Constraints</u>

- > Depth
- ➤ Variable receptor soil characteristics
- Downslope impacts (slope stability)

o Benefits

- > Adequate receptor soil
- ➤ Recharges aquifer system
- ➤ Only viable solution at many sites

www.aesgeo.com

SITE ASSESSMENT OVERALL PROJECT LEVEL CONSTRAINTS

- o Geology/soil characteristics
- o Ground water conditions
- o Infiltration potential
- Water balance issues
 - > Wetlands
 - Springs
 - Water Supply
- o Final Site Use
 - Commercial
 - Residential
 - > Industrial

SITE ANALYSIS

- o Exploration
 - > Exploration pits
 - Deep exploration borings
- o Testing
- o Modeling

READILY AVAILABLE RESOURCES

AES

- o USGS and DNR Geologic Maps
- o USDA Maps
- o In House Previous Work

INFILTRATION RATE TESTING

AESI

SPECIAL CASE ONLY:

- o Grain Size Distribution
- o Published Soil Infiltration Rates

OUTDATED:

- o Percolation Test (Single Standpipe)
- o Double Ring Infiltrometer

PREFERRED:

- o Large-Diameter Single Ring
- o Pilot-Scale PIT

INFILTRATION RATE DETERMINATION

AESI

Ecology 2012, Sieve Analysis (USDA/ASTM)
Recessional Outwash or Holocene only

$$\log_{10}(K_{sat}) = -1.57 + 1.90D_{10} + 0.015D_{60} - 0.013D_{90} - 2.08f_{fines}$$

USDA METHOD, ECOLOGY 2005 REMOVED FROM ECOLOGY 2012

Table 3.7—Recommended Infiltration Rates based on USDA Soil			
Textural			
	*She rerm Infil Rate (in/h)	Correction. Factor	Estimated Long- Term (Design) Infiltration Rate (in/hr)
Clean sandy gravels and gravelly sands	20	2	10
Sand	8	4	2
Loamy Sand		4	0.5
Sandy Loam	4	4	0.25
Loam	0.5	4	0.13

OLD SCHOOL INFILTRATION

AES

Falling Head Test (EPA)

SMALL SCALE INFILTRATION -

AES

Pilot Infiltration Test (PIT)

LARGE SCALE INFILTRATION -

AES

Pilot Infiltration Test (PIT)

TESTING FREQUENCY | 2012 ECOLOGY MANUAL -

- o <u>Commercial Sites</u>
 - ➤ 1 test per 5,000 sq. ft.
 - > Groundwater thru wet season
- o Residential Sites
 - ➤ 1 Test per 200 feet of road and every lot
 - > Groundwater thru wet season

SCALE OF INFILTRATION TESTS

MODELING ANALYSIS —

AESI

- o Depth to water table
- o Infiltration rate of native soils
- o Hydrographs
- o MODRET

GROUND WATER MOUND DEVELOPMENT -

RECEPTOR SOILS -

- o Organic Content
- o Infiltration rate of native soils
- o Cation Exchange Capacity
- o Grain Size Distribution

STORMWATER INFILTRATION -SUMMARY -

- o Characterization of Receptor Soils Hydraulic Parameters
- o Infiltration Rate Laboratory/Field Measurements
- o Depth to Water Table Thickness of Unsaturated Zone
- o Groundwater Flow Direction Impacts to Environment/Wells
- o Depth of Aquitard Aquifer Capacity
- o Design Storm Event Peak Flow Rate/Total Volume

SUMMARY—

AESI

- o Geologic constraints and opportunities must be fully and correctly incorporated prior to site planning and engineering.
- O Geology can help predict the nature of the physical environment.

LAKEWOOD CROSSING -

-AESI

Project Team:
Powell Development
City of Marysville
Dowl Engineers
Associated Earth Sciences, Inc

PROJECT LOCATION

SITE CONDITIONS

AESI

- o <u>Previous use:</u>
 - > Nursery
 - > Farm Land
 - > Residential
- o <u>Topography:</u>
 - > Flat

SITE EXPLORATION -

- o 58 Hollow stem auger borings
 - > 12 to 40 feet
- o 30 exploration pits
 - > Tracked excavator
- o 2 monitoring wells

SOIL CONDITIONS

- o Typical Marysville Sand Sequence
 - ➤ Topsoil 6 to 12 inches
 - ➤ Brown Silty Sand (weathered zone) 6 to 12 inches
 - Fine to medium gray sand with trace silt at a depth of 18 to 24 inches
 - ➤ Water table 24 to 36 inches

WATER TABLE -

SITE CONSTRAINTS -

- o Flat topography
- o Parking requirements
- o Site design

ALTERNATIVE -

- o Conventional Collection:
 - ➤ Off-site pond
 - > Acquire more land
 - Discharge into existing ditch which flows into salmon bearing Quilceda Creek
- o This option required raising the entire site 8 feet at \$1M per foot

LID OPTIONS -

- o Pervious surfacing
- o Biofilters Cartridge
- o Curb cuts to bio-swales

DESIGN ELEMENTS -

- o Infiltration rate 9 inches per hour
- $\circ\;$ Separation to water table 1 foot from the bottom of the storage layer
- o Very large parking area

Native subgrade

SUBGRADE -

- o Choker Course
 - > 1/4" to 5/8" inch clean crushed rock (no fines)
- o Storage Layer
 - > 1 1/4" Clean crushed rock
 - ➤ No fines
 - ➤ WSDOT 9-03.09(2) Permeable Ballast
 - ➤ Specification 30% voids (tested at 42%)
- o Bank Run
 - ➤ Less than 5% minus #200 standard sieve
 - > Greater permeability than the native subgrade

SUBGRADE PREPARATION

AESI

- o Stripping depth
- o Uniformity of subgrade support
- o Static Roll
- o Geotextile

CONSTRUCTION

-AES

- o Static roll or No roll
- o Truck traffic to a minimum, establish haul routes
- o Erosion control
- o Finished product protection

SUBGRADE PROTECTION —

- o Siltation from other areas
- o Truck Traffic
- o Concrete washouts

SECTION PLACEMENT—

AESI

- o Geotextile use
- o Ballast placement
- o Static Roll

CONSTRUCTION JOINT -

AES

TARGET PARKING LOT -

PROBLEMS?!?-

AES

