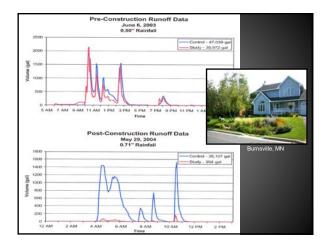


All primary pathways for removing pollutants from storm flows are active in bioretention

Stormwater volume reduction. Sedimentation. Filtration. Phytoremediation. Thermal attenuation.

Adsorption.

Volatilization.


water quality treatment

introduction

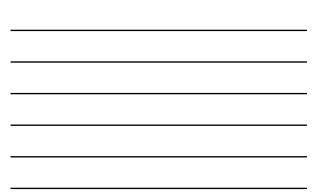
Flow volume re	ductions in	n bioretenti	on			
	Completed	Infiltration	Sizing	Volume Reduction (%)		
Siskiyou Green Street	Oct 2003	1.5 -2.0 in/hr	6%	*(1/04 – 12/05) 83%		
Glencoe Rain Garden	Oct 2003	1.8 - 3.0 in/hr	6%	(1/04 – 12/05) 94%		
Greensboro NC	2001	0.2 – 0.6 in/hr	5%	(2002) 78%		
Sea Street	2001	variable		(2001 – present) 98%		
110 th Cascade	2003			(10/04 – 06) 74%		
Meadow on the Hylebos	2006	0.0 – 0.8 in/hr	15%	(10/07 – 5/08) 99.99%		

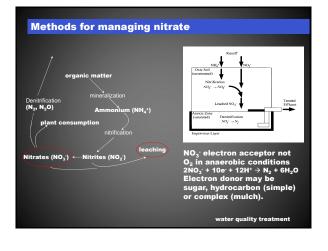
Soil sampling	in bioreten	tion facil	ities					
	e. Coli (mpn/g)		Pb (mg/kg)	Hg (mg/kg)	Zn (mg/kg)			
Siskiyou Green Street								
0-6"	280	34.4	56.8	0.103	170			
6-12'		17.0	12.2	0.032	100			
12-18"		17.6	10.9	0.054	96			
SW 12th & Montgomery								
0-6"	7	30.1	29.9	0.043	120			
12-18"		22.2	18.9	0.082	92			
MTCA MTCA <th< td=""></th<>								

Percent removal of metals and TSS in bioretention and grass bioswales

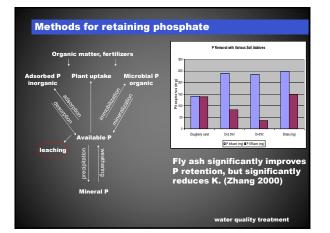
	TSS mgL-1	P/TP mgL-1	P/diss mgL-1	NO3+2-N mgL-1	NH4-N* mgL1	TKN mgL ⁻¹	Total Cu	Total Pb ugL-1	Total Zn ugL-1	FC
Grass Swales (dry)			-							
25th percentile										
In	8.00	0.06	0.03	0.11		0.31	5.02	1.65	19.1	1400
Out	5.12	0.12	0.05	0.13		0.29	3.57	1.08	15.5	1900
Median										
In	21.70	0.11	0.06	0.30		0.72	10.86	3.93	36.2	4720
Out	13.60	0.19	0.07	0.25		0.62	6.54	2.02	22.9	5000
75th percentile										
In	56.00	0.24	0.09	0.62		1.48	27.00	18.20	136.0	20300
Out	33.00	0.32	0.26	0.47		1.10	13.20	6.27	50.0	18500
Bioretention Facilities										
25th percentile										
In	18.30	0.06		0.16		0.54	8.35	2.06	46.3	
Out	3.80	0.05		0.11		0.32	3.98	2.50	4.8	
Median										
in	37.50	0.11		0.26		0.94	17.00	3.76	73.8	
Out	8.30	0.09		0.22		0.60	7.67	2.53	18.3	
75th percentile										
In	87.80	0.22		0.41		1.58	38.50	7.00	153.8	
Out	16.00	0.20		0.39		1.25	12.00	5.00	36.0	

water quality treatment

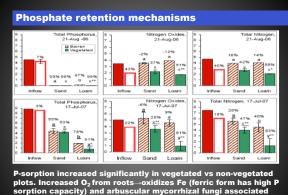

Percent remo and grass bio				
	TSS (mg/L)	Cu (µg/L)	Pb (µg/L)	Zn (µg/L)
Davis etal 2001		89% (u) 92% (l)	>98% (u) >98 (l)	>98% (u) >98 (l)
Davis etal 2003**		>99%	>99%	>99%
Greenbelt		97%	>95%	>95%
Largo		43%	70%	64%
Hunt etal 2006				
Greensboro	-180%	99%	81%	98%
Chapel Hill		- A		
Hsieh, Davis 2005	91%			
Multhanna etal 2007		63%	93%	87%
PNW Bioswales (Herrera 2006)	64%			47%
National Bioswales (Herrera from Barrett)	43%			53%
Event mean concentration	ons			
Porcont reduction at 1	8 cm (upper) a	and 61 cm (lower)	depths (lab)	

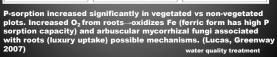


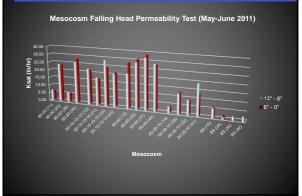
Percent removal of nutrients in bioretention and grass bioswales							
	TKN (mg/L)	NO ₃ (mg/L)	TP (mg/L)	Hydrocarbons (µg/L)			
Davis etal 2006	38% (u) 68% (l)	-96% (u) 24% (l)	1% (u) 81% (l)				
Greenbelt	57%	16%	65%				
Largo	67%	15%	87%				
Mass removal	97%	97%	99%				
Hunt etal 2006							
Greensboro	-4.9%	75%	-240%				
Chapel Hill	45%	13%	65%				
Hsieh 2005				>97%			
PNW Bioswales			18%	-10%			
(Herrera 2006)			1076	-10%			
Nat'l Bioswales**				-88%			

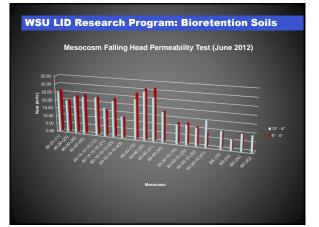

Event mean concentrations Percent reduction at 18 cm (upper) and 61 cm (lower) depths (lab) Herrera from Barrett

water quality treatment

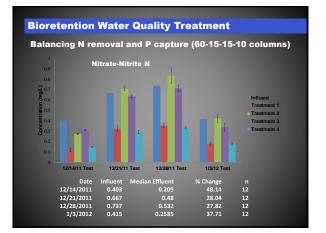


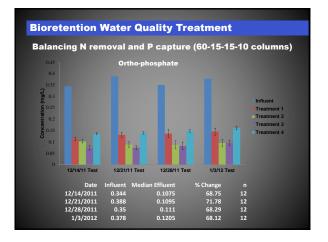





WSU LID Research Program: Bioretention Soils

bioretention: mesocosms


WSU LID Research Program: Bioretention Soils



Bioretention Water Quality Treatment

All mesocosms (Phase 1 leaching regime)

		Median		Median			
Analyte	Units	Influent	Min	Effluent	Max		
TSS	mg/L	4.9		5.3	22.5	36	
Diss Zn	μg/L	71			10	40	
Diss Cu	μg/L		1.7	8.6	15.9	40	
PO4	mg/L	0.016	0.086	0.236	0.461	40	
NO3-NO2	mg/L	0.361	0.05	0.145	1.03	32	
Fecal coliform	CFU/100mL	229		22.5	65	32	

Bioretention Water Quality Treatment

Water quality treatment mechanisms

Is the following statement true:

If 0.5 μ g/L influent concentration of dissolved Cu results in 2 μ g/L effluent concentration, then

100 $\mu\text{g/L}$ influent concentration dissolved Cu will result in 400 $\mu\text{g/L}$ effluent concentration

Plants play a critical role in bioretention flow and water quality treatment performance

Plant roots penetrate soil creating flow paths, exude saccharides and dead material that feed soil organisms and create soil aggregates.

Treatment mechanisms:
Nutrient uptake.
Metal uptake.
Uptake, volatilization, transformation of organics.

- Plants influence water quality directly (e.g. uptake) and indirectly through physical an chemical changes to rhizosphere.

bioretention plants

Summary and recommendations

- Bioretention areas provide excellent Zn, hydrocarbon, bacteria and TSS removal.
- Metal, hydrocarbon and TSS removal primarily in upper few centimeters. Hydrocarbons transformed within a few days. Mulch layer most important for metal and hydrocarbon removal.
- Phosphorus, nitrogen and Cu removal is variable. Nitrate, phosphate and Cu export is possible.
- Phosphate management: 1) sorption capacity (short and long term); 2) plants likely necessary for improved and adequate P management; 3) precipitation (longer-term and likely between events process; 4) HRT and BSM depth (likely due to increased contact time).

water quality treatment

Summary and recommendations

- Nitrate removal dependent on O₂ levels. Use raised underdrain to create an anaerobic zone and improve NOx for effluent release to marine water.
- More research needed for optimizing for phosphate and Cu removal. Research in progress at WSU.
- Discussion focused on percent removal and concentrations. When considering volume reduction in rain gardens, loads dramatically reduced for all constituents.
- Need to be careful with selection of materials and suppliers (particularly with compost).

water quality treatment