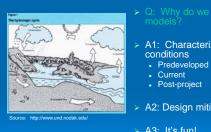


Presentation Overview

- > Hydrologic Modeling
- > Performance Standards
- Modeling Guidelines, Tools, Concepts
- > Bioretention Types

- Flow Control
- Water Quality Treatment
- Combined Sewer
 Overflow Reduction
- Wetland Protection


September 10, 2014

Hydrologic Modeling

- A: Use of mathematical equations to estimate <u>runoff</u> based on:
- weather patterns
 landuse
- soiltopography

Hydrologic Modeling

A1: Characterize hydrologic conditions

- Post-project
- > A2: Design mitigation
- > A3: It's fun!

Hydrologic Modeling

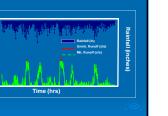
- > A: Start to finish
 - preliminary design (sizing)
 - final design (optimization)
 - demonstrate requirements met (permit submittals)

Performance Standards

- > On-site Stormwater Management (MR #5) (NEW 2012) • Use BMP List (rain garden)
 - or
 - Meet LID Performance Standard (match flow durations to pre-developed condition from 8% to 50% of the 2-year peak flow)
- > Runoff Treatment (MR #6)
 - Infiltrate 91 percent of the total runoff volume through soil meeting Ecology treatment criteria (for infiltration BMPs)
- Flow Control (MR #7)
 - Match flow durations to pre-developed condition from 50% of the 2-year to the 50-year peak flow
- > Other Flow Control Standards
 - Combined Sewer or Capacity Constrained Basins (peak-based standards)

Hydrologic Modeling Methods

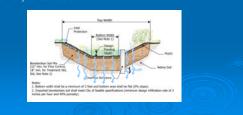
- > Single-event models • May be appropriate for conveyance sizing
- Continuous models Required for sizing flow control (MR7) and treatment (MR6) BMPs
- Simplified sizing tools • Will be covered in class exercise


Hydrologic Modeling Single-Event Methods > Input single storm event > Output peak flow rates Output peak flow I Typical methods SCS SBUH StormShed SWMM HEC-HMS Rainfall (inches) Runoff (cfs) Time (hrs)

Hydrologic Modeling Continuous Models

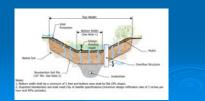
Runoff (cfs)

- Input long-term rain and evaporation
- Output continuous runoff, peak flow, & duration
- Typical programs


 - MGS Flood
 - KCRTS
 - SWMM
 - SUSTAINInfoWorks

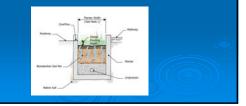
Bioretention Types

- Without Underdrain


- Relies on infiltration to native soil Can meet on-site list requirement Can provide effective WQ treatment for some pollutants Can provide effective flow control and meet duration standard for many soil conditions

Bioretention Types

With Underdrain


- Some infiltration to native soil
 Can meet on-site list requirement
- Can interformation of requirement
 Can provide effective WQ treatment for some pollutants
 May not be able to meet duration standard alone, but can contribute as part of a system to achieve flow control goals (raised underdrain and orifice improve performance)

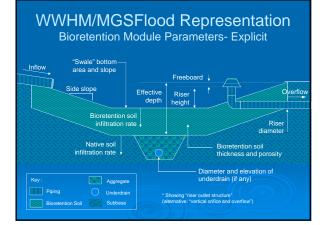
Bioretention Types

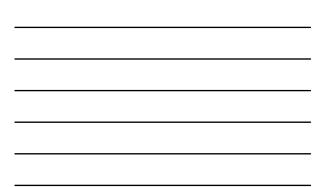
With Underdrain & Liner/Impermeable Container

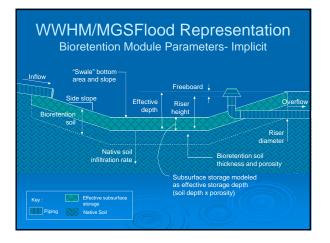
- No infliration to native soil
 Can meet on-site list requirement
 Can provide effective WQ treatment for some pollutants
 Cannot meet duration standard alone, but can contribute as part of a system to achieve flow control goals (orifice improves performance)

Current Modeling Guidelines

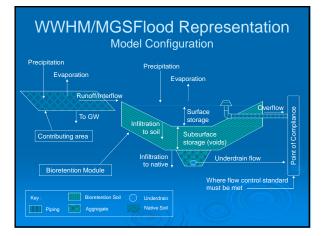
> Implicit Method (2005 LID Manual)

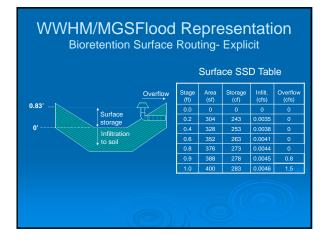

- Lump surface ponding and storage in BR soil
 Effective depth = ponding depth + BR soil depth x void ratio (%)
 MGS Flood and WWHM3
 Neglects movement of water through layers


Explicit Method


- Explicitly represents: Surface ponding Infiltration into BR soil and native soil Storage in BR soil Overflow Underdrain flow
 MGSFlood4, WWHM4,WWHM2012

WWHM/MGSFlood Basics


- Model Inputs
- Meteorological Data
 Rainfall (5-min, 15-min, hourly)
 Evaporation (daily)
- > Land Cover Types
- Impervious areas Slope
 Pervious areas
 - - Vegetation Soil type (A, B, C/D)
- Slope
 Regional calibrated parameters (Dinicola 1990)
- BMP Configurations



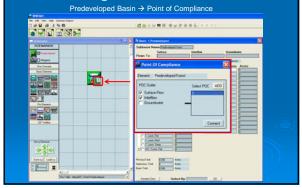
Bioretention Sizing Examples

- > Flow Control in Creek Basins (WWHM)
- > Water Quality Treatment (WWHM)
- > Flow Control for CSO Reduction (SWMM)

Flow Control in Creek Basin WWHM4 Example- Explicit Method

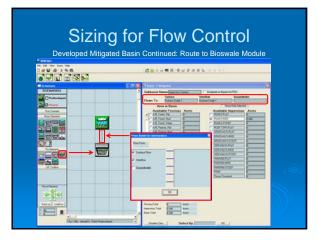
> Site in Seattle

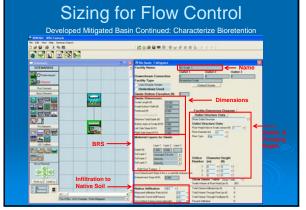
- Size bioretention cell to meet creek protection goal (Ecology flow duration standard)
- Predeveloped condition = forest on till
- Native soil is till (0.25 inch/hour design infiltration rate)
- Bioretention cell (12" ponding depth, no underdrain)
- > Receiving runoff from 2,000 sf of impervious area (0.046 acres) Using bioswale module in WWHM4 15 minute time-step

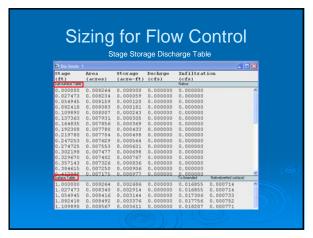


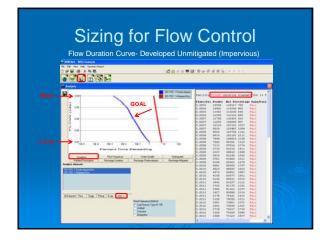
7

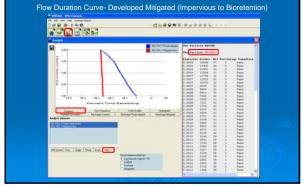
Basin → Select a	rea, soil type,		slope
		Note Note Note - Control to your set of your	

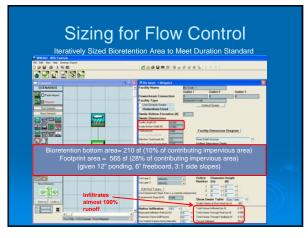

Sizing for Flow Control Predeveloped Basin → Point of Compliance

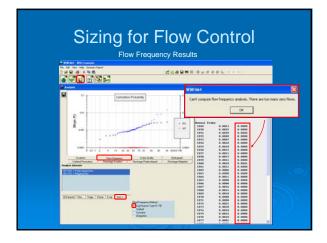


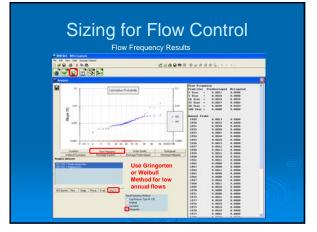


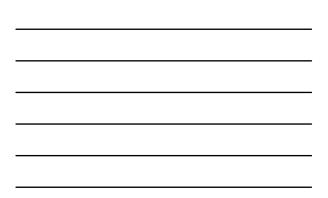


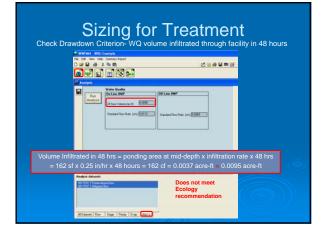


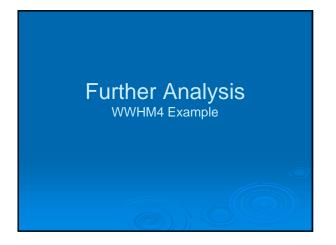


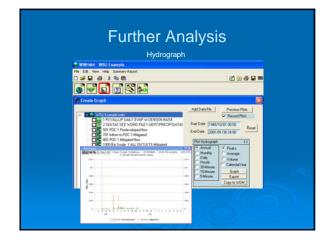

Sizing for Flow Control Flow Duration Curve- Developed Mitigated (Impervious to Bioretention)

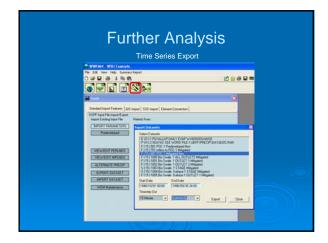




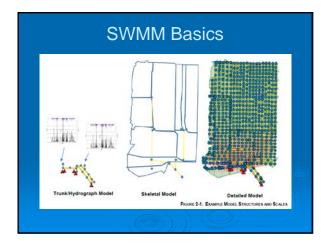


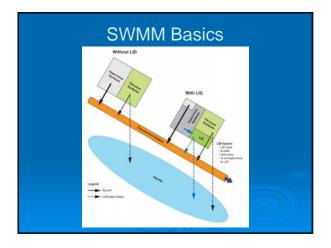

Water Quality Treatment Same WWHM4 Example for Flow Control

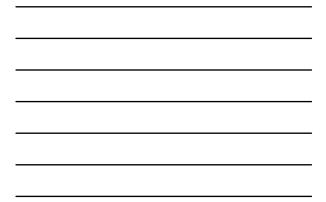

Constant and framesis No. 10 Nov. No. Science Parent Constant State Science Parent Constant S	Nagas events
	2012 2 https:// 2014 2 mg/d/ 20
Footprint area = 30	o sf (15% of contributing imperious area) nding, 6" freeboard, 3:1 side slopes)

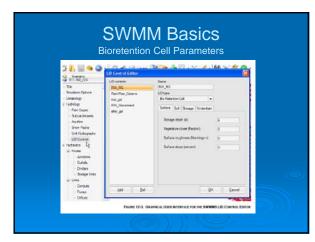


Rep	ort	
NYHTIMA VISU Faangin Citi Yeer Help Sunnay Report Citi Citi Citi Citi Citi Citi Citi Cit		200
Report		50
8	Parameter Report	Landure Report
Project Name: WES Example Site Amin. Site Address (city 1 - Report Rate : 4/8/2012 Gage : Smatc. Bata Start : 1548/10/10 00:00 Data Start : 1549/10/10 00:00 Version : 2012/04/04		
Low Flow Threshold for POC 1 : 50	Percent of the 2 Year	
High Flow Threshold for POC 1 : 50	year	

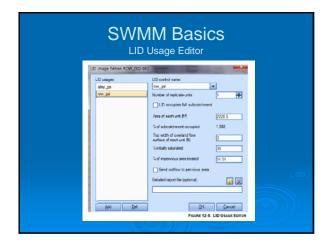


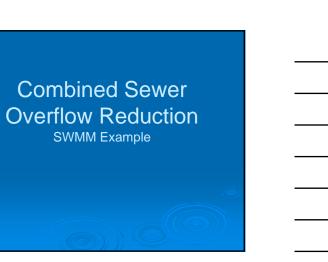



 > Environmental Pro Management Moo > Meteorological Da • Rainfall and ev 	lel (SWMM) ta Inputs) Storm	water
Land Surface	Table 5-1. Estimating Effective Imperviou Subcatchment Type	s Surface Area	Scaling	Effective
Characteristics	Sacadament Type	TIA	Factor(s) (%)	Impervious Surface (TIA * s)
 BMPs LID controls 	ROW – informal	GIS or site survey	61	Calculated
	ROW - curb and gutter	Site survey	95	Calculated
allow explicit modeling	Parcel – wiexisting IMP surface discharges directly to the public drainage system through a pipe or surface channel	Site survey	56	Calculated
of GSI	Parcet – w existing IMP surface discharges to the private pervious surface or private drainage feature (e.g., rock pockets, large vegetated area)	Site survey	28	Calculated
	015 = geographic information system MIP = impervious ROW = right-of-way TUA = total impervious area			

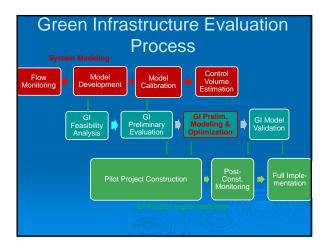


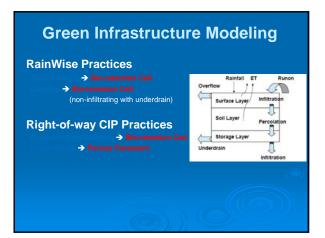
					ontrols
Table 12-1. Compo GSI Type	osition of V Surface	Pavement	s in SWMM Soil	5 Storage	Underdrain
Bioretention	V	- artsinen	V	V	©
Porous Pavement	4	4		4	0
Bioswale	4		•	0	0
GST+ green stormasti SWMM+ stormaster n					Rainfall ET Runon Overflow Surface Layer Infitration Soil Layer Percolation Storage Layer Underdrain

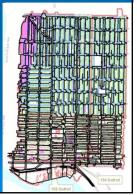


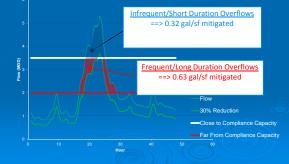

-		ention C	Cell P		ICS neters
Vertical Layer	Property	Description	Unit, Field KD, or Data Type	Exangle Value	Data Source
Surface .	Starage depth	Ponding depth (do not include beetkaard)	Indae	6	COS delegal
	Vegetalion solume Ractor	Fraction of layer volume Bled with vegetation	Fraction	0,1	-00 Design
bor	Tholeses	Thickness of the sol Jayer	inches	12 (MENUE UD) 24 (MENUE)	sPU
	Porcety	Volume of pore space relative to total soli volume	Factor	0.4	Rawis et al., 1998
	Field capacity	Values of pore water relative to boar waters after the soil tas dramed fully by gravity	Fraden	0.13	Raws et al., 1996 for loany sand locture
	aliting part	Volume of pore water relative to solar volume for a well-dred sol or which only found water remains	Fraction	0.04	Raws et al., 1998 data, difference between total and effective porcetly
	Conductivity	Hydraulic conductivity for the fully saturated soll	intestor	3	seu :
	Conductivity stope	Stope of the curve of log conductivity versus soil moisture content	Dmensioniess	10	SWWM guidance average of value for xand plus value for silt loam
	Dutton head	Soli capitary suction along the welling form	Indes .	2.42	Assumed, toarry

Bioretention Cell Parameters							
Table 12-2 Vertical Layer	Property	Description	Unit, Field E), or Data Type	Example Value	Data Source		
Storage	Height	Height of a gravel layer below the soil layer	Index	1 (without LO) 5 (with LO)	SPU		
	Void raffic	Volume of vold space relative to the volume of acids in the layer	Rubo	0.667	(Equivalent to 0.4 porceity)		
	entitiation cate	Rute at which water infiltutes into the native soil below the storage layer	Indestour	Depends on background soll	To be provided by SPU or geotechnical analysis		
	Choisens factor	Total volume of treated hunoff it takes to completely cog the bottom of the layer divided by the volt volume of the layer	Dimensionless	3	Not used		
Underdram	Oran coefficient	Clefficent of the equation that calculates the flow rate through the underchain as a function of water level above the drain height.	Inches ⁽¹⁾ Incur	Depends on cullet sole	9U		
	Dram exponent	Exponent of head in EWVM drain equation	Orwnooriese	0.5 (prifice (ran)	SIMMS guidance		
	Dran offset neight	Height of underdram pipe from the bottom of the layer or rain bartel	Inches	6	SPU		

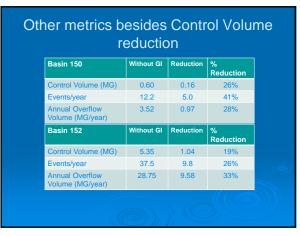








GI Modeling


- Modeled using EPA SWMM5
- · 32-year long term simulations performed
- Feasibility Analysis overlaid with model subcatchment delineation to develop input files

Basin Scale Optimization: Basin-Specific Performance

Resources

- LID Technical Guidance Manual <u>http://www.pierce.wsu.edu/Water_Quality/LID/LID_manual2005.pdf</u>
- ≻ WWHM
- > MGSFlood http://www.mgsengr.com/MGSFlood.html
- HSPF <u>http://water.usgs.gov/software/HSPF/</u>
- > WDMUtils http://www.epa.gov/waterscience/basins/b3webdwn.htm

Questions and Answers ???

