

Siting Considerations
LID Principles
Manage rain where it falls
 Distribute LID practices across site → Smaller facilities, managing water from smaller areas Minimize concentrating flows
Use hydrology to guide site layout
Retain natural drainage features/patterns
 Locate infiltrating BMPs in areas with best soils
Preserve SW management functions of site
Minimize disturbance to vegetation and soil
Preserve trees

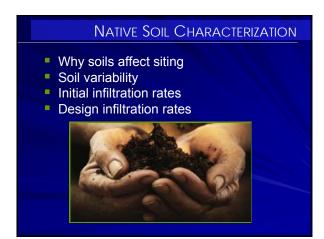
INFILTRATION SITING CONSIDERATIONS When do they apply? Small vs. large-scale infiltration Infiltration restrictions Infiltration setbacks

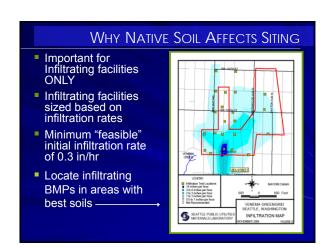
INFILTRATION SITING CONSIDERATIONS Large-Scale vs Small-Scale Large-scale infiltration BMPs: infiltration basins, dry wells and injection wells concentrate stormwater flows and infiltrate large volumes at discrete points with high infilt. rates Bioretention: should be small and distributed across a site with a hydrologic regime closer to a natural vegetated condition

Infiltration Siting Considerations RESTRICTIONS (SOURCES: SMMWW INFEASIBILITY CRITERIA) Infiltration not permitted in: Geotechnical evaluation deems imprudent erosion, slope failure, flooding Erosion/landslide hazard areas Groundwater protection area Insufficient vertical separation from bottom of facility to hydraulic restriction layer (water table, bedrock, compacted soil layer) - 1 foot clearance if the contributing area is less than: ■ 5,000 square feet of pollution-generating impervious surface ■ 10,000 square feet of impervious area ¾ acres of lawn and landscaped area 3 foot clearance for larger contributing areas Infiltration Siting Considerations SETBACKS (SOURCE: SMMWW INFEASIBILITY CRITERIA)

Infiltration not permitted within:

- 100 ft of drinking water supply wells or springs
- 10 ft of septic systems or drain fields
- 50 ft from top of slope >20% and over 10 ft relief
- 100 ft contaminated site or landfill
- 10 100 ft of USTs (depending on size)
- Local setbacks from structures (e.g., 5 ft to 10ft minimum, increasing with drainage area*)
- Local setbacks from property lines (e.g., 5 ft from property lines without neighbor agreement*)

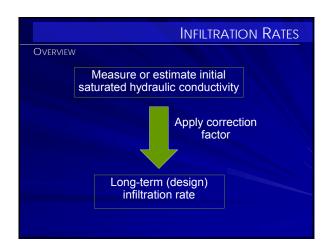

*Seattle Criteria

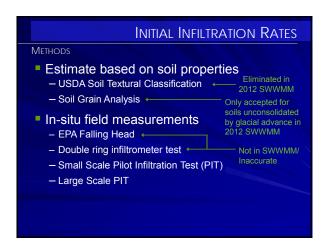

Infiltration Siting Considerations

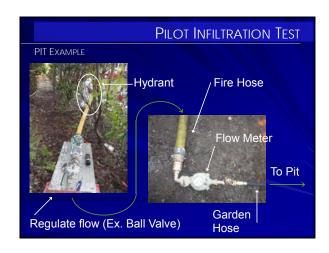
OTHER CONSIDERATIONS

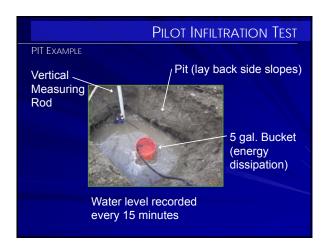
- Understand fate of infiltrated water
 - Intent is to infiltrate to native underlying soil
 - Arterial ROW with dense underground infrastructure (preferential pathway → utility trenches)
 - Potential for excessive shallow interflow emerging at slopes, development cuts, or in basements
- Use engineering controls
 - Ex. Trench water stops to prevent reinfiltration to pipes
 - Ex. Liners to protect adjacent infrastructure

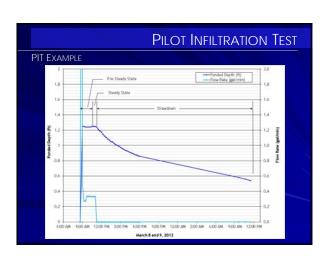
Tree preservation Site Slopes Cross & Longitudinal Slopes Positive Drainage from drainage area to BR to overflow Setbacks (e.g., utilities & other infrastructure) May require presettling Public acceptance/ participation (retrofits) Transportation/pedestrian safety

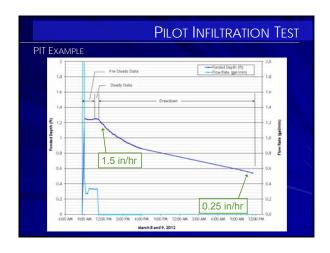












INITIAL INFILTRATION RATES METHODS Estimate based on soil properties - USDA Soil Textural Classification Use for soils - Soil Grain Analysis + In-situ field measurements - EPA Falling Head Double ring infiltrometer test - Small Scale Pilot Infiltration Test (PIT) - Large Scale PIT Use for all PILOT INFILTRATION TEST ECOLOGY SMALL SCALE PIT METHOD Excavate Pit Depth ~ surface elevation of native soil (before BSM placement) Horizontal bottom area ~ 12 to 32 sf Side slopes laid back, but vertical for test ponding depth (6 – 12in) Install Vertical Measuring Rod Install Splash Plate Reduce side wall erosion and disturbance of bottom (clogging) Fill Pit for Pre-Soak Period Standing water (at least 12 inches) for 6 hours Adjust Flow Rate for Steady State Period Constant water depth (6 – 12 inches) for 1 hour Turn off Water and Record Rate of Infiltration Until Empty PILOT INFILTRATION TEST ECOLOGY SMALL SCALE PIT METHOD (CONTINUED) Depth to Groundwater Over excavate 3 feet below pit bottom to check for hydraulic restrictive layers (e.g., bed rock, till/clay lenses) or groundwater Alternatively, monitor groundwater through wet season PIT Timing - Test between December 1 and April 1 Number of PITs Recommend one PIT at each bioretention site - For larger site, one PIT every 5,000 sf For long narrow facilities, one PIT every 200 lineal feet (unless borings indicate consistent soil characteristics)

DESIGN INFILTRATION RATES CALCULATE FROM INITIAL RATES Correction factors applied to initial rate to estimate long-term rate for design Correction factors: Site variability and number of locations tested = 0.33 to 1 Degree of influent control to prevent siltation and bio-buildup = none required (overlying BSM provides excellent protection) Design rate = Initial Rate x CF (0.33 to 1)

Additional Site Characterization
 Seasonal High Groundwater Monitoring well or excavated pit Assess during wet season Groundwater Mounding Analysis For drainage area > 1 acre contributing to one facility Soil Characterization Grain size analysis

SITE CHARACTERIZATION LESSONS LEARNED

BALLARD ROADSIDE RAIN GARDENS, SPU

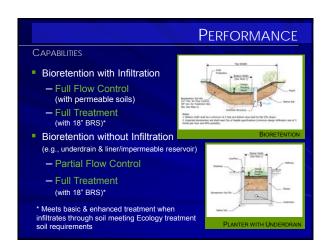
- Bioretention pilot for CSO control
- Funded by stimulus money → fast timeline
- Many rain gardens not draining

 - Poorly infiltrating soilsPerched/mounded groundwater
 - Springs

What went wrong:

- Communication/Public Involvement Strategy
- Site Characterization —
- Design
- Construction Practices

Final geotech report not complete until after 90% design


SITE CHARACTERIZATION LESSONS LEARNED Ave NW between NW 65th & 67th St Infiltrating (drains in < 24 hours)

SITE CHARACTERIZATION LESSONS LEARNED

- Be aware of the level of data required vs risk and costs
- Consider potential of GW mounding on top of glacial till
 - Indicators of high seasonal GW: seeps, wet pavement, saturated planting strips
- Ask community about evidence of GW springs, basement flooding
- Timing of subsurface evaluation
- Clearly communicate risks of accelerating schedule
 Include formal geotech review at 30% design
 Leave time for 2nd round of tests if 1st round indicates high variability
 Measured infiltration rate
- - < 0.75 in/hr → conduct more in-depth subsurface evaluation</p>
 - 0.25 0.75 in/hr → redundant design (e.g., underdrains)
 - <0.25 in/hr → infiltrate?

Positive grade from drainage to BMP to overflow Bioretention with infiltration also subject to: Infiltration restrictions and setbacks Minimum vertical separation to GW/impermeable layer* New permit feasibility criteria: Vertical separation of 3 feet for larger contributing areas is only allowed as proof of infeasibility when contributing area cannot reasonably be broken down into smaller areas

PERFORMANCE STANDARDS Flow Control: Non Exempt Receiving Water (Most Creek Basins)Ecology requirement to match the peaks and duration to predeveloped condition (usually forest) Combined Sewer or Capacity Constrained BasinsLocal requirements are typically peak-control based Water Quality: Infiltrate 91 percent of the total runoff volume through soil meeting Ecology treatment criteria

