

LID Technical Workshop – Puget Sound

Bioretention: Design and Construction

Presentation Overview

Bioretention Basics/Types Bioretention Components Design by Component Layout, Elevation & Grade Roadway Challenges Construction Considerations

> ALICE LANCASTER, PE alancaster@herrerainc.com

September 10, 2014

BIORETENTION BASICS

BIORETENTION VS. RAIN GARDENS

According to the 2012 Ecology Manual:

- Bioretention (MR 1-9)
 - Engineered facility
 - Sized for flow control/WQ goals
 - Designed soil mix
 - May include underdrains/control structures
- Rain Garden (MR 1-5)
 - Non-engineered landscape depression to manage stormwater
 - Less restrictive design criteria

BIORETENTION BASICS

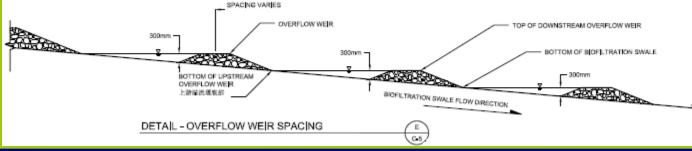
BIORETENTION TREATMENT CATEGORY

Bioretention is a "bio-infiltration" BMP

- Ponding system
- Treatment via vertical flow through treatment soils while being infiltrated
- Treatment goal = % volume infiltrated
- Bioretention is NOT a "bio-filtration" BMP
 - Flow-through system (ex. biofiltration swale)
 - Treatment via lateral flow through vegetation while being conveyed
 - Treatment goal = hydraulic residence time

BIORETENTION CELLS

- Shallow vegetated depressions
- Gentle side slopes typical
- Not designed as conveyance system
- Optional underdrains/control structures

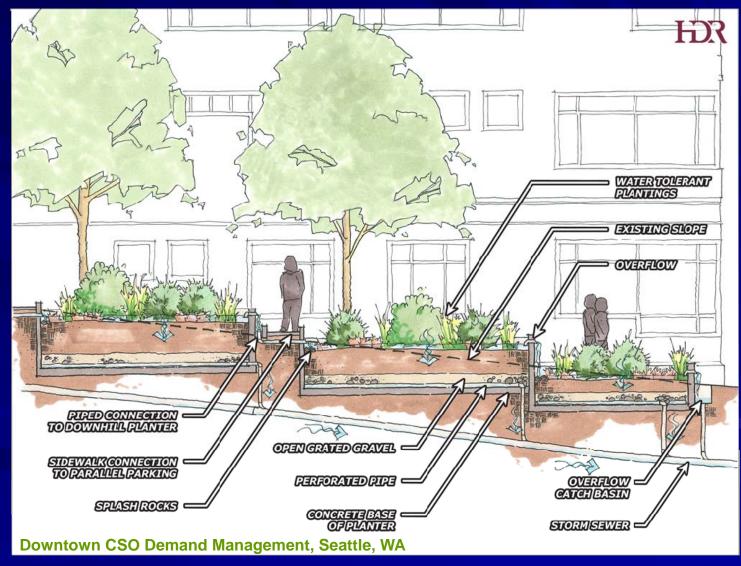


BIORETENTION SWALES

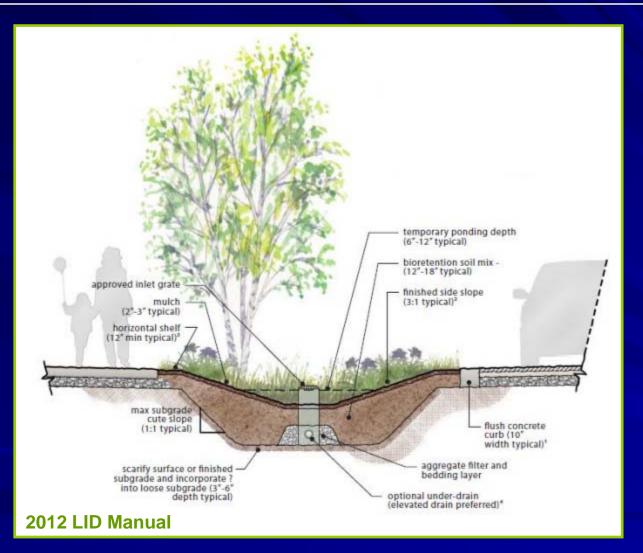
- Same design features as cells
- Interconnected series of cells
- Provide conveyance (overflow directed to downstream cell)

BIORETENTION PLANTERS

- Vertical walled reservoir (typ. concrete)
- Often used in ultra-urban settings
- Open bottom to allow infiltration to native soil
- Optional underdrains/ control structures


BIORETENTION PLANTER BOX

Same design features as planters
Closed, impermeable bottom
Must include underdrain
Optional control structure



Hybrid- Planter Swale

BIORETENTION COMPONENTS

- Flow Entrance
- Pre-Settling
- Ponding Area
- Bioretention Soil
- Mulch/Compost
- Vegetation
- Filter Fabric (?)
- Liner (optional)
- Underdrain (optional)
- Overflow

Design Criteria / Types

Flow entering should be non-erosive – Velocity less than 1.0 fps Dispersed flow entrance ——> Preferred! - Vegetated buffer strip - Sheet flow across pavement/gravel Sheet flow b/t wide wheel stops Concentrated flow entrance -→Requires erosion – Piped flow protection – Curb cuts (e.g., rock) – Trench drains

FIELD EXAMPLES

HIGH POINT, SEATTLE, WA

Field Examples

BAGLEY ELEMENTARY, SEATTLE, WA Can use wheel stops to restrict loading

COUPEVILLE HIGH SCHOOL COUPEVILLE, WA

FIELD EXAMPLES

Depressed gutter at inlet

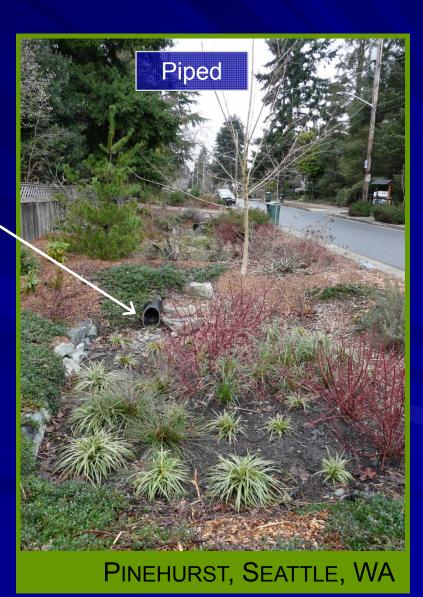
2012 LID MANUAL

Finish grade should be 2-3" lower than curb line to allow for settling

FIELD EXAMPLES

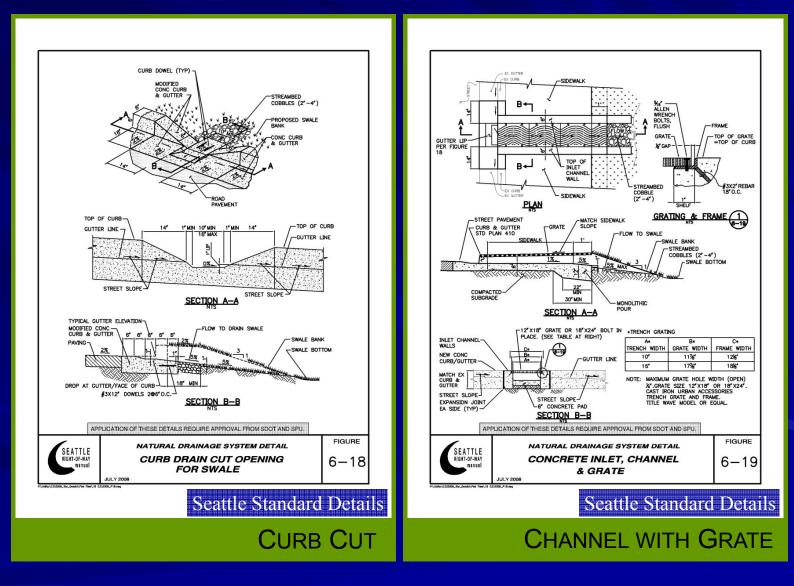
Do not use woody plants at inlet (can restrict or concentrate flows)

FIELD EXAMPLES



2012 LID MANUAL

For higher/surface elevation inlets


FIELD EXAMPLES

Rock pad for erosion protection

DESIGN RESOURCES

Pre-Settling

Design Criteria / Types

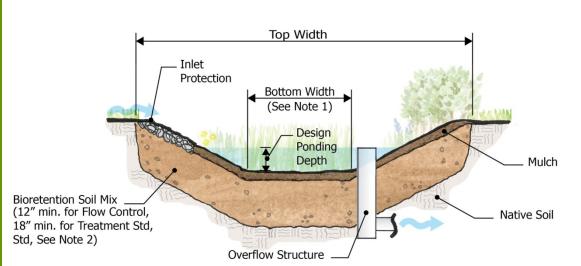
- To capture debris/sediment and reduce potential for clogging of BSM
- May be required for:
 - -For concentrated flow entrances
 - -For larger drainage areas
 - Where sediment loading is expected (e.g., high-use parking lots and roadways)
- Pre-settling methods:
 - -Vegetated filter strip
 - -Fore bay
 - -Catch basin

Ponding Reservoir Types

EARTHEN DEPRESSION

ROCKERY WALLS

PONDING AREA


Ponding Reservoir Types

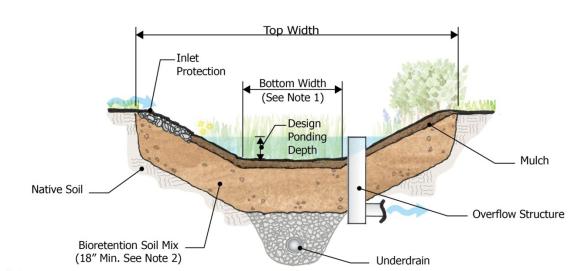
Design/Performance

Without Underdrain

- Earthen depression (w/o liner) or open-bottomed planter
- Relies on infiltration to native soil
- Can provide effective flow control and WQ treatment

Notes:

1. Bottom width shall be a minimum of 2 feet and bottom area shall be flat (0% slope).


2. Imported bioretention soil shall meet City of Seattle specifications (minimum design infiltration rate of 3 inches per hour and 40% porosity).

BIORETENTION

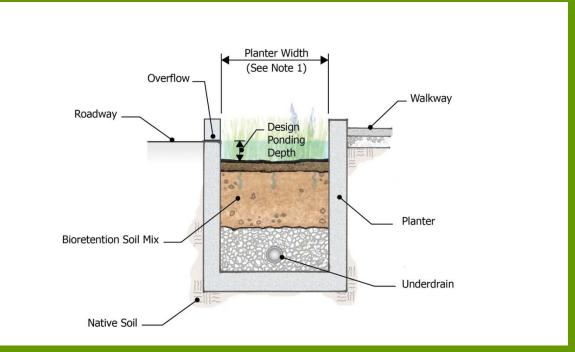
Design/Performance

With Underdrain

- Some infiltration to native soil (w/out liner)
- Cannot meet forest duration flow control (orifice improves performance)
- Can provide effective WQ treatment

Notes:

1. Bottom width shall be a minimum of 2 feet and bottom area shall be flat (0% slope).


2. Imported bioretention soil shall meet City of Seattle specifications (minimum design infiltration rate of 3 inches per hour and 40% porosity).

BIORETENTION WITH UNDERDRAIN

Design/Performance

With Underdrain & Liner/Impermeable Container

- No infiltration to native soil
- Typically provides minimal flow control (orifice improves performance)
- Can provide effective WQ treatment

PLANTER WITH UNDERDRAIN

Sizing Criteria

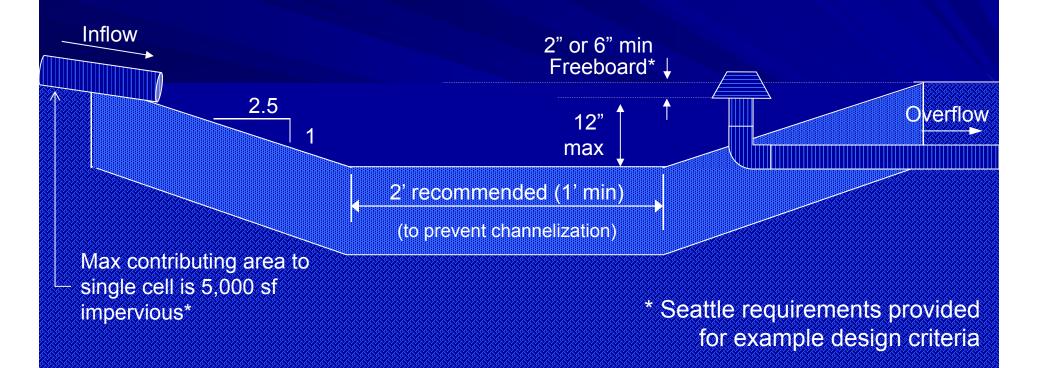
- Stormwater Management Standards
 - Flow control standards (peak/duration)
 - Water quality standards (infiltrate 91% runoff volume)
- Max. surface pool drawdown time (24-48 hours)
 - Soil allowed to dry out periodically
 - Restore hydraulic capacity of system
 - Maintain adequate soil oxygen levels
 - Prevent conditions supportive of mosquito breeding

*Surface Pool Drawdown= Ponding Depth + Design Infiltration Rate

Sizing Criteria

- Stormwater Management Standards
 - Flow control standards (peak/duration)
 - Water quality standards (infiltrate 91% runoff volume)
- Max. surface pool drawdown time (24-48 hours)
 - Soil allowed to dry out periodically
 - Restore hydraulic capacity of system
 - Maintain adequate soil oxygen levels
 - Prevent conditions supportive of mosquito breeding

*Surface Pool Drawdown= Ponding Depth ÷ Design Infiltration Rate Ex. 6 inch ÷ 0.25 inch/hour = 24 hours


Ponding Area Size a Function of:

Larger Footprint Area for:

- Larger contributing area
- Higher site precipitation
- Lower native soil infiltration rate
- Shallower ponding depth
- Shallower BSM depth

CROSS SECTION CRITERIA

- Max ponding depth (12 inches)
- Min bottom width (1 foot)
- Max planted side slope (2.5:1) (for depth ≥ 3 ft)
- Min freeboard?
- Max contributing area or bottom area?

Roadway Facility Criteria

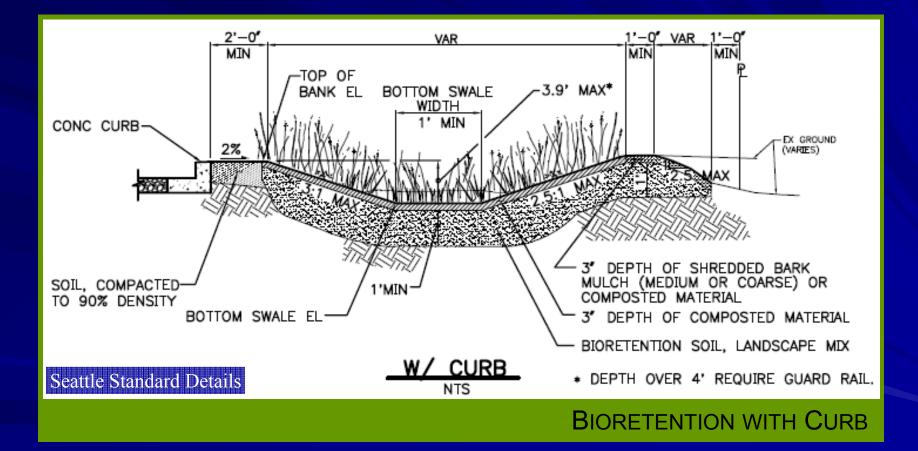
ROADWAY CROSS SECTION

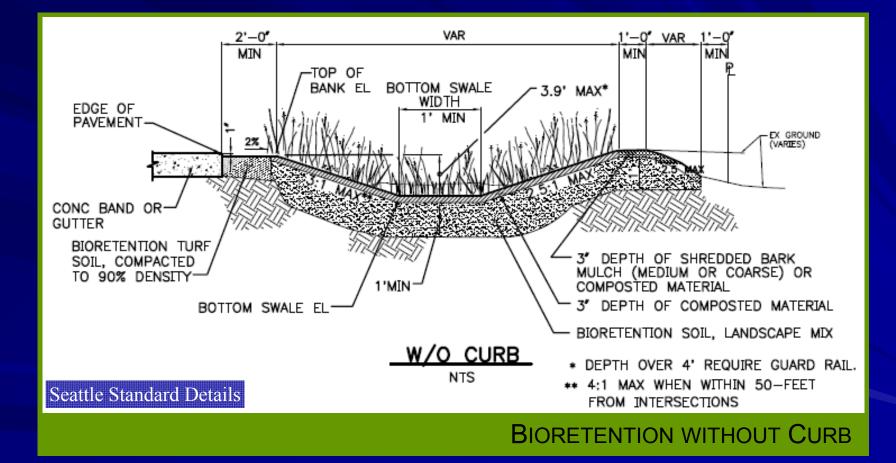
- 2-foot shoulder
- Grade at 3H:1V
- Grade at 4H:1V for intersections (Seattle)
- Compact shoulder to 90 percent standard proctor

ROADWAY FACILITY CRITERIA (SEATTLE)

FIXED OBJECT HAZARDS

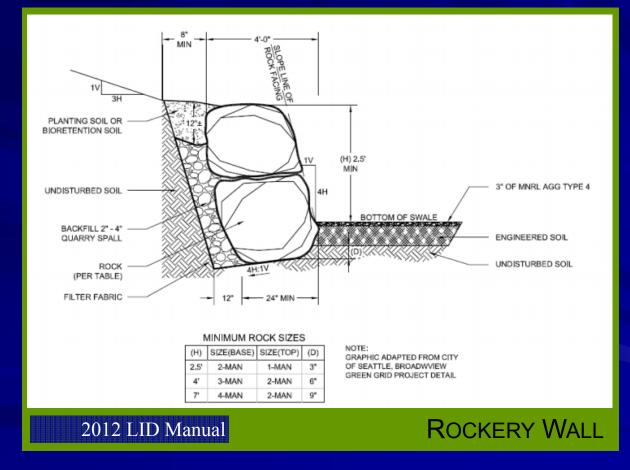
Rockery >1' high, min 10' from curb/edge of road
Rockery <1' high min 5' from curb/edge of road


ROADWAY FACILITY CRITERIA (SEATTLE)

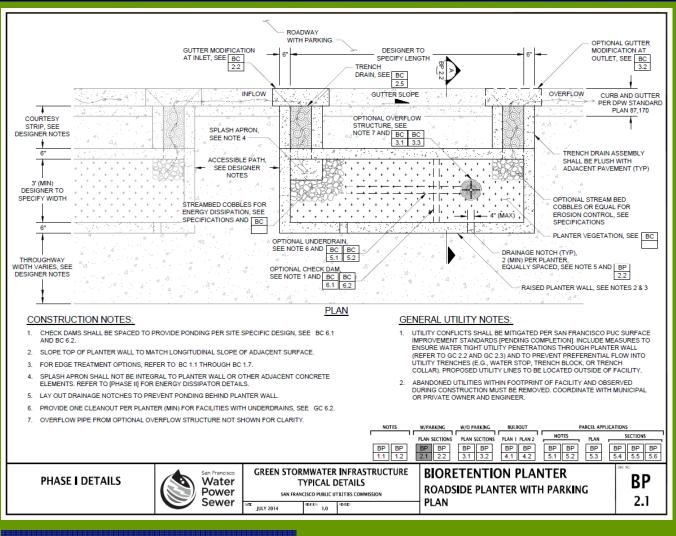

MAXIMUM FACILITY DROP

Max 4' drop from vehicular lane

Design Resources

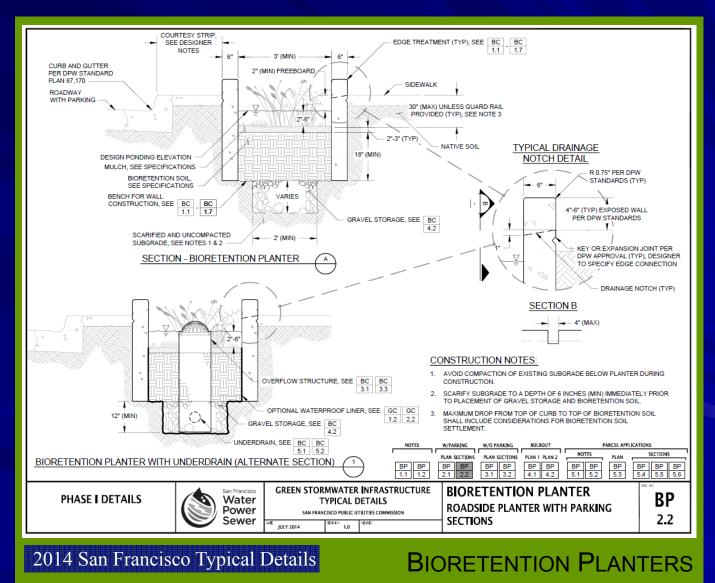


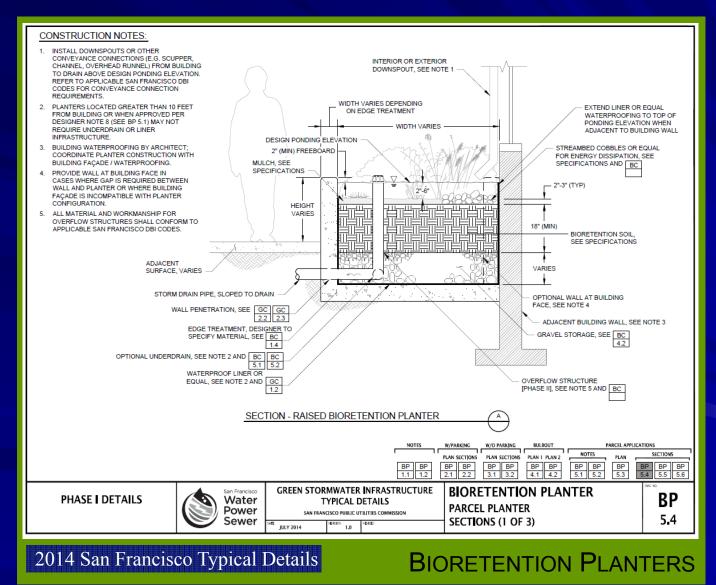
Design Resources



PONDING AREA

DESIGN RESOURCES


Design Resources


2014 San Francisco Typical Details

BIORETENTION PLANTERS

Design Resources

Design Resources

BIORETENTION SOIL

Overview

- Purpose
 - Supports plants& microbes
 - Removes pollutants
- Options

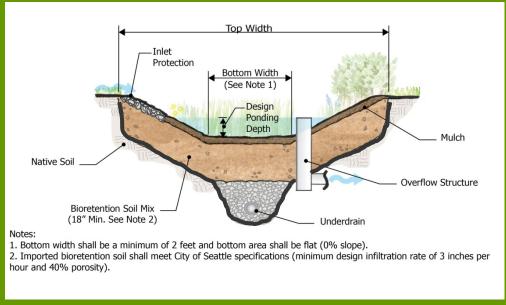
- Amend Native soils in place
- Over excavate and place imported soil
- Minimum soil depth
 - 12 inches for flow control
 - 18/24 inches for water quality treatment

BIORETENTION SOIL

Overview

- For treatment → meet Ecology trtmnt soil rqmnts
 - Minimum depth = 18 inches
 - Minimum CEC = 1meq/100g dry soil
 - Organic matter content = 4 8%
 - Maximum initial infiltration rate = 12 in/hr
 - Minimum long-term (corrected) rate = 1 in/hr
- Approved BSM Specification in 2012 LID Manual
 - -40% porosity
 - Short-term infiltration rate of 6 inches / hour
 - Design rate of 3 in/hr (for cont. areas up to 5,000 sf)
 - Design rate of 1.5 in/hr (for cont. areas exceeding 5,000 sf)

MULCH/COMPOST


Overview

- Purpose
 - Reduces weed establishment
 - Regulates soil temp & moisture
 - Adds organic matter to soil
 - Attenuates heavy metals
- Composition

- Course compost in the bottom of the cell
- Arborist wood chip mulch composed of shredded or chipped hardwood / softwood on cell slopes
- Depth: 2 to 3 inches
- Alternatives: Dense ground cover or aggregate

FILTER FABRIC??

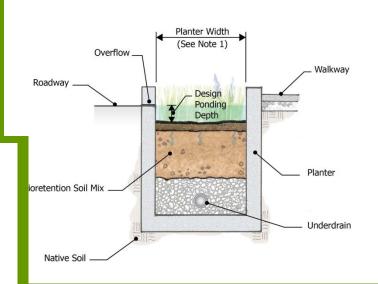
FILTER FABRIC??

- Typically NOT recommended between existing soil and BSM because of clogging potential
- Gradation difference between existing soil and BSM is typically small so no migration of fines

Hydraulic Restriction Layers

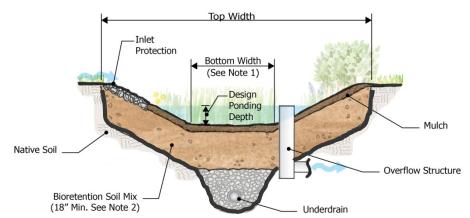
Restrict Lateral Flows

- Geomembranes on vertical walls
- For facilities adjacent to roads, foundations, etc.



Hydraulic Restriction Layers

PREVENT ALL INFILTRATION


- Where infiltration is prohibited or not prudent
- Must use underdrain

Impermeable reservoir (concrete, metal)

IMPERMEABLE PLANTER

Clay (bentonite) or _____ geomembrane

Notes:

1. Bottom width shall be a minimum of 2 feet and bottom area shall be flat (0% slope).

2. Imported bioretention soil shall meet City of Seattle specifications (minimum design infiltration rate of 3 inches per hour and 40% porosity).

BIORETENTION WITH LINER

DO YOU NEED THEM? WHY? WHEN?

BROADVIEW GREEN GRID, SEATTLE, WA

- Where liner is used
- Where infiltration is prohibited or not prudent
- Near sensitive infrastructure with high flood potential
- Soil infiltration rates not adequate to meet surface pool drawdown time

Recommended Design

Slotted PVC Pipe with Aggregate Filter Blanket

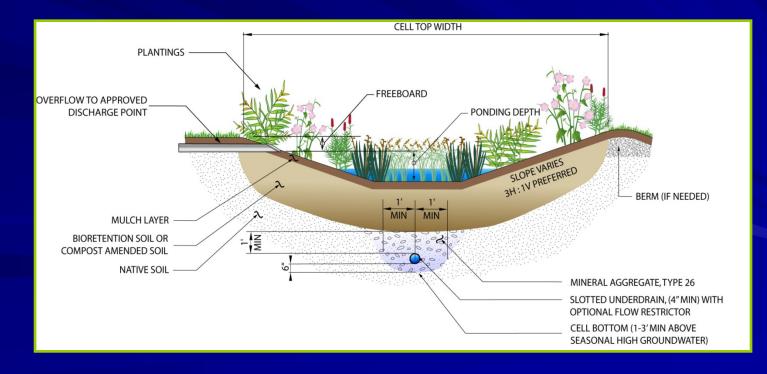
- Slotted, thick-walled plastic pipe
 - Minimum 4" diameter Schedule 40 PVC
- Slot openings
 - Smaller than smallest aggregate gradation of filter material
 - Slots perpendicular to long axis of pipe
- Gravel filter/bedding material
 - Prevent migration of fine material into drain
 - City of Seattle Mineral Aggregate Type 26 (sandy gravel)
- NOT wrapped in filter fabric

Note: If using City of Seattle Mnrl Agg 26, slots shall be 0.069 inches by 1-inch long, spaced 0.25 inches apart. Slots arranged in four rows spaced on 45-degree centers.

BR

Soil

Recommended Design


PVC Slotted Pipe

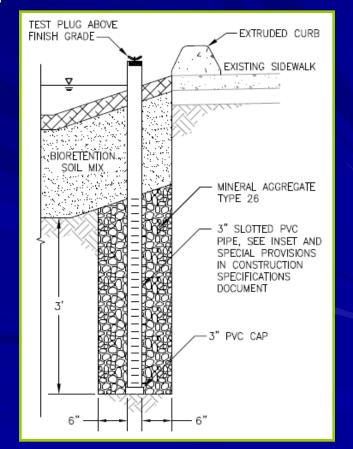
Filter → Material (Ag 26)

Recommended Design

- Slotted pipe placement (Seattle)
 - 6" blanket under
 - 12" blanket on top
 - 12" blanket each side

RECOMMENDED DESIGN BENEFITS

- Increased media area provides better filtering
- Reduced potential for clogging (versus perforated pipe wrapped in filter fabric)
- More durable and easier to clean (rotary root cutter or water jet)
 (versus perforated PVC or flexible slotted HDPE)

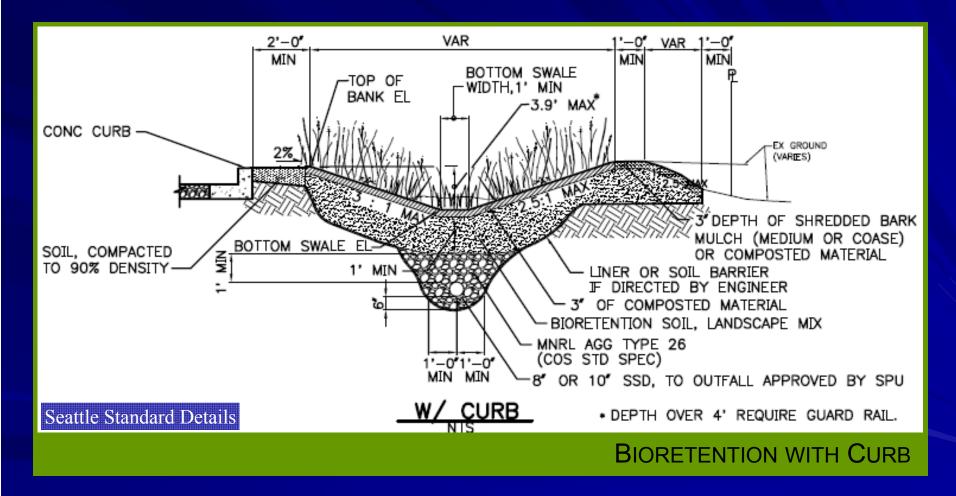


Additional Guidance:

- Minimum underdrain slope = 0.5%
- Observation pipe/clean out
 - 6" rigid non-perforated
 - Every 250 to 300 feet
 - Clean out port
 - Observation well for dewatering rates

Raised underdrain

- Maximize infiltration
- Fluctuating aerobic/ anaerobic conditions
 Donitrification
 - \rightarrow Denitrification



Additional Guidance:

Orifice/control structures

- Improve flow control performance
- Minimum 0.5" orifice diameter
- Design with access for future modification
 - "Adaptive management"
 - Cap drain pipe
 - Throttle flows with orifice

Design Resources

Overflow

DESIGN CRITERIA/TYPES

Necessary to safely convey flows that exceed capacity

- Typically required unless designed for full infiltration
- Protect downstream property and resources
- Overflow elevation set at max. ponding depth
- Directed to downstream BMP or approved discharge pt
- Sizing
 - Conveyance sized for local jurisdiction level of service
 - Consider larger overflows (e.g., grade so overflows to ROW)

Overflow

Surface Overflow

- Sheet flow
- Gravel level spreader
- Exit curb cut / trench drain

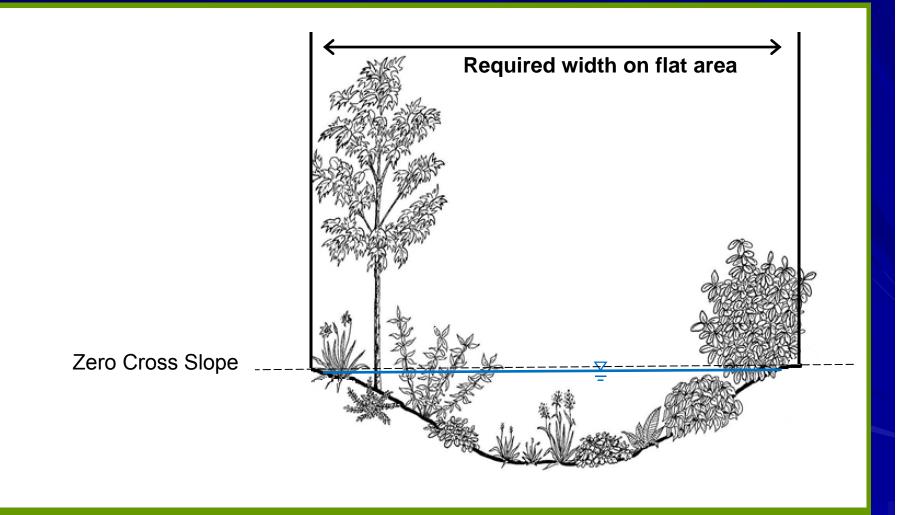
SHEET FLOW OVERFLOW

Overflow

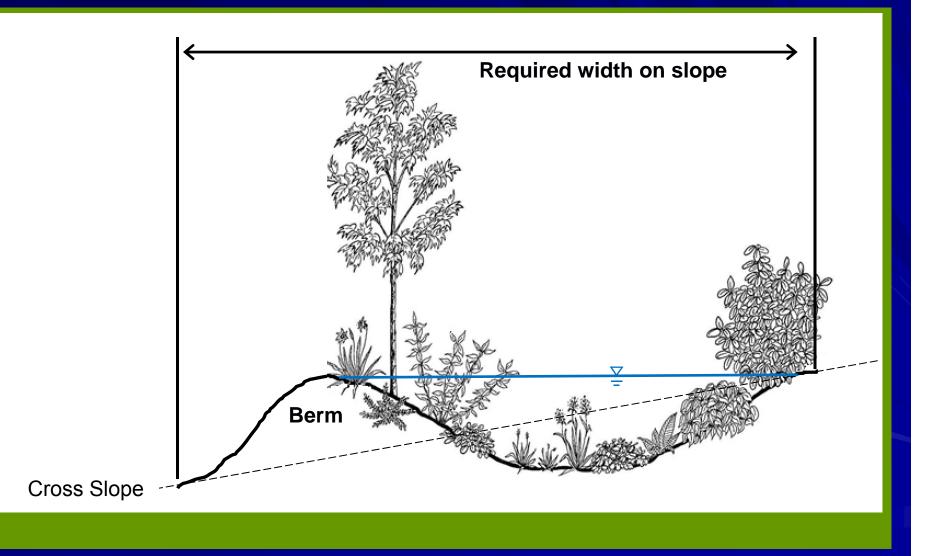
SUBSURFACE OVERFLOW

- Catch basin
- Vertical stand pipe
- Horizontal pipe
- Can be connected to underdrain system

LAYOUT OPTIONS


SINGLE

Design Considerations


Cross Slope

- Larger footprint area and berming or wall(s) to achieve ponding area
- Longitudinal Slope (series of flat-bottomed cells)
 - Optimum slope is 2% / Maximum slope = 8%
 - Steep slopes: control gradient with intermittent weirs or berms or standpipe overflow to provide ponding and dissipate energy
 - Flat slopes: may need weir to create ponding
- Need positive grade for gravity flow
 - Inflow from contributing area to bioretention cell
 - Overflow from bioretention cell

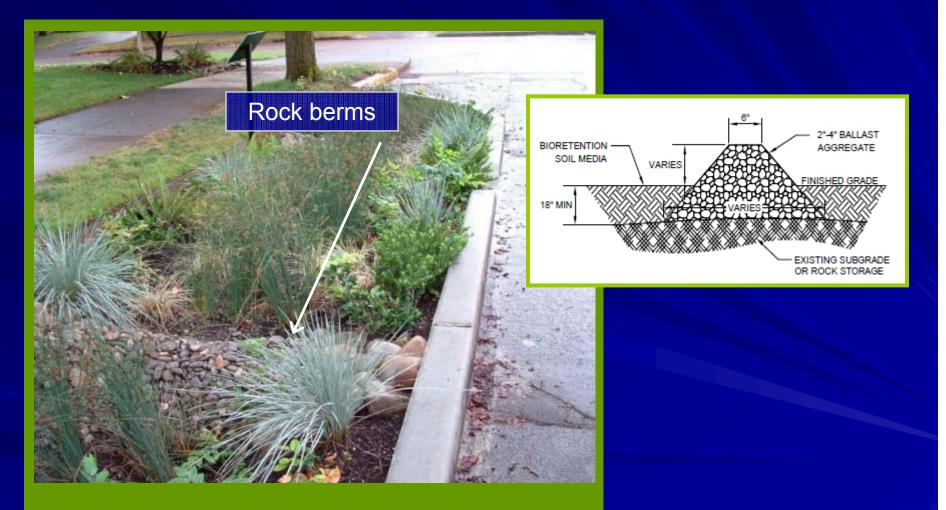
CROSS SLOPE

CROSS SLOPE

CROSS SLOPE

Berm & Rockery

BROADVIEW GREEN GRID, SEATTLE, WA


Longitudinal Slope- Create Series of Flat-Bottomed Cells

- Check dams / weirs or vertical stand pipe overflow
 - Reduce flow velocities & erosion potential/dissipates energy
 - Create ponding to promote infiltration
- Types of check dams / weirs
 - Compacted earthen berms covered with vegetation
 - Vegetated hedgerows
 - Rock
 - Wood
 - Concrete
- Optimum spacing determined by longitudinal slope, performance goals and cost

MILD LONGITUDINAL SLOPE

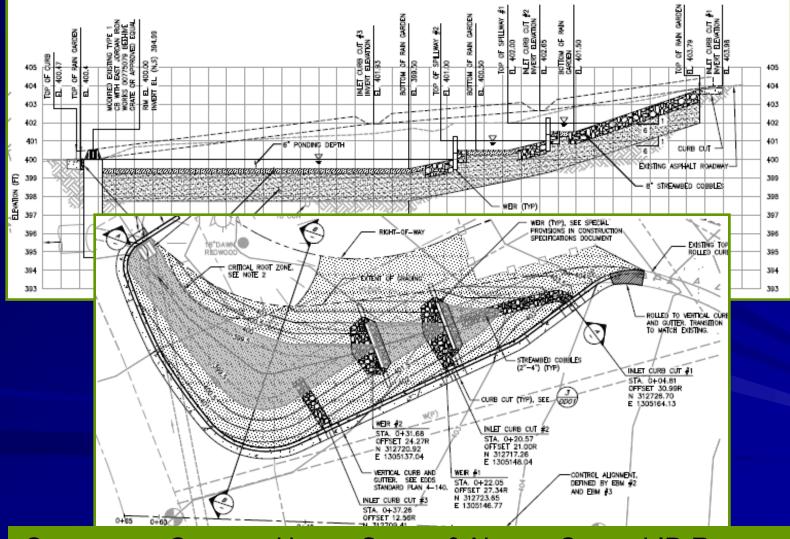
MILD LONGITUDINAL SLOPE

MILD LONGITUDINAL SLOPES

Moderate Longitudinal Slope

MODERATE LONGITUDINAL SLOPES

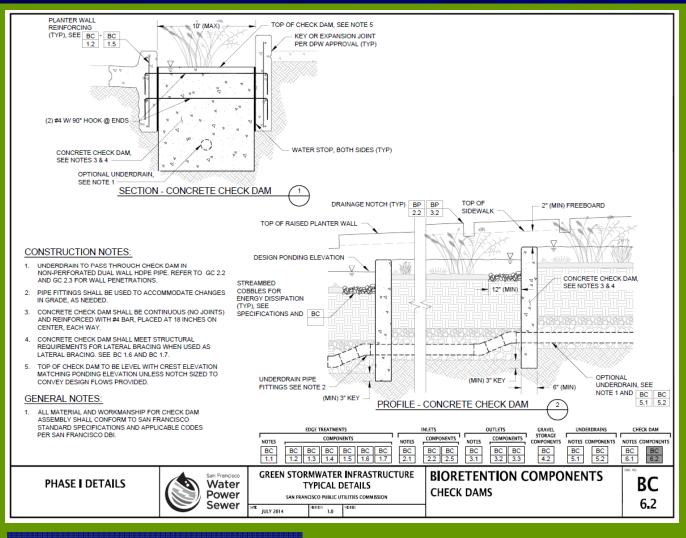
Steeper Longitudinal Slope



STEEP LONGITUDINAL SLOPES

Steeper Longitudinal Slope

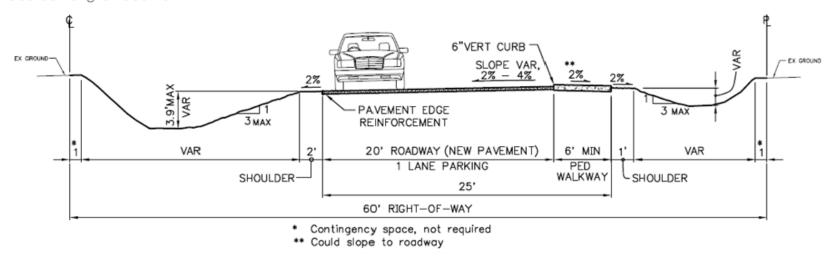
DESIGN EXAMPLE- LONGITUDINAL SLOPE (WEIRS)


SNOHOMISH COUNTY- UPPER SILVER & NICKEL CREEK LID RETROFIT

DESIGN EXAMPLE- LONGITUDINAL SLOPE (WEIRS)

SNOHOMISH COUNTY- UPPER SILVER & NICKEL CREEK LID RETROFIT

Design Resources

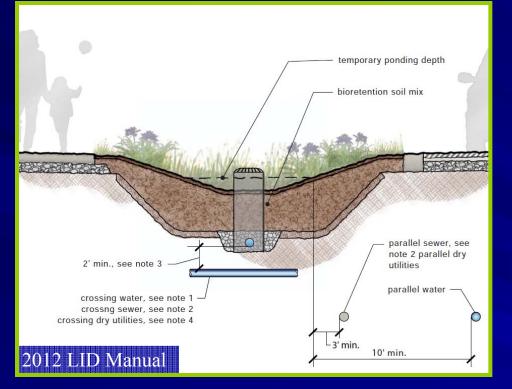

2014 San Francisco Typical Details

CHECK DAMS

ROADWAY CONSIDERATIONS

CROSS SECTIONS

Example of 20' roadway bioretention on both sides. Source: City of Seattle



Example of 20' roadway bioretention on one side. Source: City of Seattle

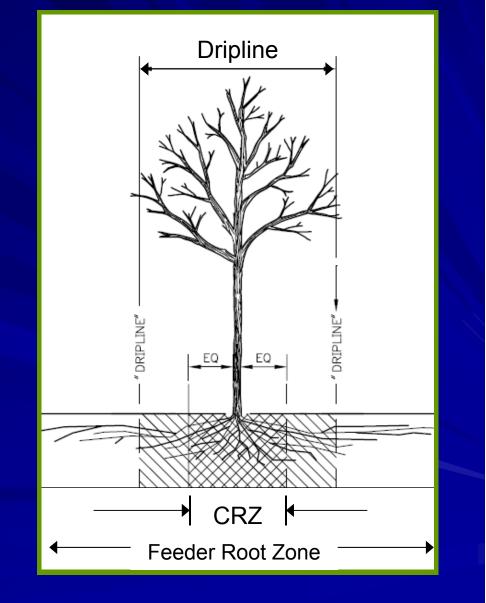
ROADWAY CONSIDERATIONS

UTILITY SETBACKS

- Publicly owned: water, sewer, SW
- Franchise: communications, gas, power
- Horizontal and vertical setbacks
- Mitigation measures if setbacks not met:
 - Liners over utility
 - Sleeve utility
 - Water stops/trench dams

- Minimize site disturbance
- Tree protection
- Preventing over compaction
- Erosion and sediment control
- Construction sequencing (covered tomorrow)

Tree Protection


- Trees are valuable!
- Arborist evaluation
- Valuation posted on each tree
- Vegetation protection in TESC

TREE PROTECTION

Critical Root Zone (CRZ) \rightarrow

- No disturbance
- Arborist present for construction in CRZ
- Dripline \rightarrow
 - Fence during construction
- Feeder Root Zone \rightarrow
 - Limit heavy equipment/ stockpiling
 - Limit Trenching
- Utility Boring
 - Tunnel/bore under trees to avoid open cut trench through CRZ and dripline

BACK-UP PLAN FOR NATIVE SOIL VARIABILITY

- Do they look like test pit?
- If lower permeability:
 - Increase size
 - Over-ex and add more BR soil
 - Increase ponding depth (if drawdown can be maintained)
 - Add underdrain

BROADVIEW GREEN GRID, SEATTLE, WA

PREVENTING OVER-COMPACTION

- Prevent over compaction CRITICAL FOR PERFORMANCE
- No excavation, soil placement, or soil amendment during wet or saturated conditions
- Operate equipment adjacent to (not in) the facility
- If machinery must operate in the facility, use light weight, low ground-contact pressure equipment

VEHICULAR LOADING PRISM- SOME COMPACTION IS NECESSARY

HIGH POINT, SEATTLE, WA

SCARIFY NATIVE SOIL

Smeared and sealed by bucket

Scarify _____ subgrade to refracture soil and till in BSM at interface

EROSION AND SEDIMENTATION CONTROL

- Protect adjacent properties
- Protect public waterways and storm systems
- Protect installed work
- Protect infiltration systems including swales, soils and porous pavement

HIGH POINT, SEATTLE, WA

Resources

- LID Technical Guidance Manual for Puget Sound <u>www.psp.wa.gov/LID_manual.php</u>
- Rain Garden Handbook for WWA Homeowners www.pierce.wsu.edu/water quality/LID/raingarden handbook.pdf
- Seattle Public Utilities GSI <u>www.seattle.gov/util/greeninfrastructure</u>
- Seattle Stormwater Manual

www.seattle.gov/dclu/codes/dr/DR2009-17.pdf

- Seattle Right-of-Way Improvements Manual <u>http://www.seattle.gov/transportation/rowmanual/manual/</u>
- Portland Sustainable Stormwater www.portlandonline.com/bes/index.cfm?c=34598

SEATTLE DESIGN REVIEW

	Technology Description
	pretention cell is a shallow depression with a designed soil mix and plants, with or without an
1	rdrain. See Figures 4.7 and 4.8 of the Manual Bioretention cells may be connected in series,
with	the overflows of upstream cells directed to downstream cells.
Infiltration Feasibility Requirements (Manual Volume 3, Section 4.3.4)	
	Review Item
FC	1. Facility is not within landslide-prone areas as defined by the Regulations for
	Environmental Critical Areas (SMC 25.09) and shown on the Critical Areas theme
	of GIS.
FC	2. Facility is not located in areas likely to have excessive sediment contamination
	(such as areas to be sanded) or high potential for concentrated pollutant spills.
FC	3. For projects located on arterial streets and/or in areas of dense underground
	infrastructure, the facility is limited to the sidewalk and planting strip area only and
	only receives sidewalk runoff, unless otherwise approved by SPU.
FC	Infiltration is typically not permitted within any of these specified setbacks:
	 Within the top of steep sloped areas, as defined by the Regulations for
	Environmental Critical Areas (SMC 25.09) and shown on the Critical Areas
	theme of GIS, calculated as 10 times the slope rise (to a 500 foot maximum)
	unless demonstrated as feasible by geotechnical analysis
	 Within 5 feet from property lines (excluding the property line abutting
	ROW)
	 Within 5 feet from structure without basement, 10 feet from structure with
	basement when runoff from < 5,000 square feet of new/replaced impervious
	area is infiltrated on site
	 Within a 1H:1V slope between the bottom edge of an infiltration facility and
	a building structure when runoff from = 5,000 square feet of new/replaced
	impervious area is infiltrated on site. The resulting setback is no less than 5
	feet from structure without basement. 10 feet from structure with basement.
	 Within 100 feet of a contaminated site or abandoned landfill

CONTACT INFORMATION

ALICE LANCASTER, PE

alancaster@herrerainc.com http://www.herrerainc.com/ phone: 206-441-9080

