

LID Technical Workshop – Puget Sound

Bioretention: Siting and Applications

Presentation Overview

Siting Considerations Native Soil Characterization Lessons Leaned Feasibility & Performance Applications

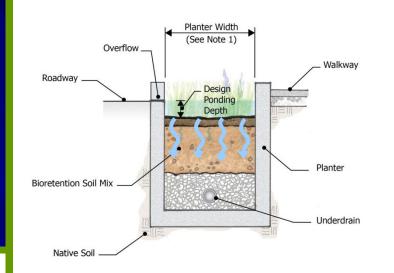
> ALICE LANCASTER, PE alancaster@herrerainc.com

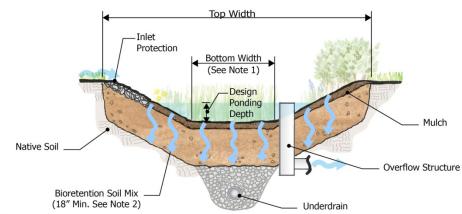
September 10, 2014

SITING CONSIDERATIONS

LID PRINCIPLES

Manage rain where it falls


- Distribute LID practices across site →
 <u>Smaller facilities, managing water from smaller areas</u>
- Minimize concentrating flows
- Use hydrology to guide site layout
 - Retain natural drainage features/patterns
 - Locate infiltrating BMPs in areas with best soils
- Preserve SW management functions of site
 - Minimize disturbance to vegetation and soil
 - Preserve trees


- When do they apply?
- Small vs. large-scale infiltration
- Infiltration restrictions
- Infiltration setbacks

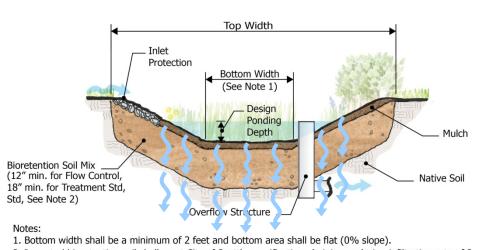
WHEN DO THEY APPLY?

All bioretention facilities:

infiltrate water through bioretention soil for treatment

Notes:

Bottom width shall be a minimum of 2 feet and bottom area shall be flat (0% slope).
 Imported bioretention soil shall meet City of Seattle specifications (minimum design infiltration rate of 3 inches per hour and 40% porosity).


BIORETENTION WITH UNDERDRAIN

PLANTER WITH UNDERDRAIN

WHEN DO THEY APPLY?

Infiltration siting considerations apply to facilities that ALSO: infiltrate water into

underlying native soils

2. Imported bioretention soil shall meet City of Seattle specifications (minimum design infiltration rate of 3 inches per hour and 40% porosity).

BIORETENTION

LARGE –SCALE VS SMALL-SCALE

Large-scale infiltration BMPs:

infiltration basins, dry wells and injection wells <u>concentrate</u> stormwater flows and infiltrate <u>large</u> volumes at discrete points with high infilt. rates

Bioretention:

should be <u>small and distributed</u> across a site with a hydrologic regime closer to a natural vegetated condition

Infiltration Siting Considerations

RESTRICTIONS (SOURCES: SMMWW INFEASIBILITY CRITERIA)

Infiltration not permitted in:

- Geotechnical evaluation deems imprudent
 - erosion, slope failure, flooding
- Erosion/landslide hazard areas
- Groundwater protection area
- Insufficient vertical separation from bottom of facility to hydraulic restriction layer (water table, bedrock, compacted soil layer)
 - 1 foot clearance if the contributing area is less than:
 - 5,000 square feet of pollution-generating impervious surface
 - 10,000 square feet of impervious area
 - ¾ acres of lawn and landscaped area
 - 3 foot clearance for larger contributing areas

SETBACKS (SOURCE: SMMWW INFEASIBILITY CRITERIA)

Infiltration not permitted within:

- 100 ft of drinking water supply wells or springs
- 10 ft of septic systems or drain fields
- 50 ft from top of slope >20% and over 10 ft relief
- 100 ft contaminated site or landfill
- 10 100 ft of USTs (depending on size)
- Local setbacks from structures (e.g., 5 ft to 10ft minimum, increasing with drainage area*)
- Local setbacks from property lines (e.g., 5 ft from property lines without neighbor agreement*)

Infiltration Siting Considerations

OTHER CONSIDERATIONS

Understand fate of infiltrated water

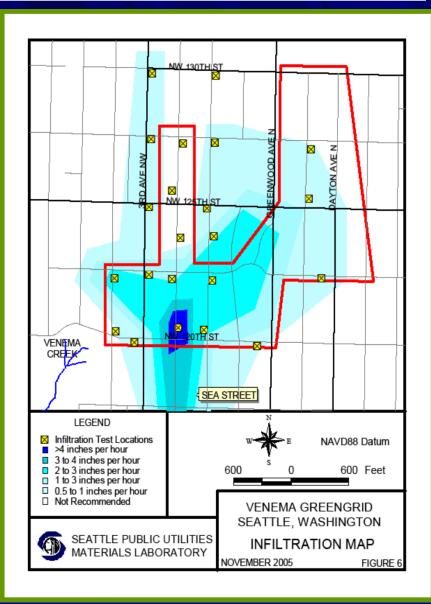
- Intent is to infiltrate to native underlying soil
- Arterial ROW with dense underground infrastructure (preferential pathway → utility trenches)
- Potential for excessive shallow interflow emerging at slopes, development cuts, or in basements
- Use engineering controls
 - Ex. Trench water stops to prevent reinfiltration to pipes
 - Ex. Liners to protect adjacent infrastructure

OTHER SITING CONSIDERATIONS

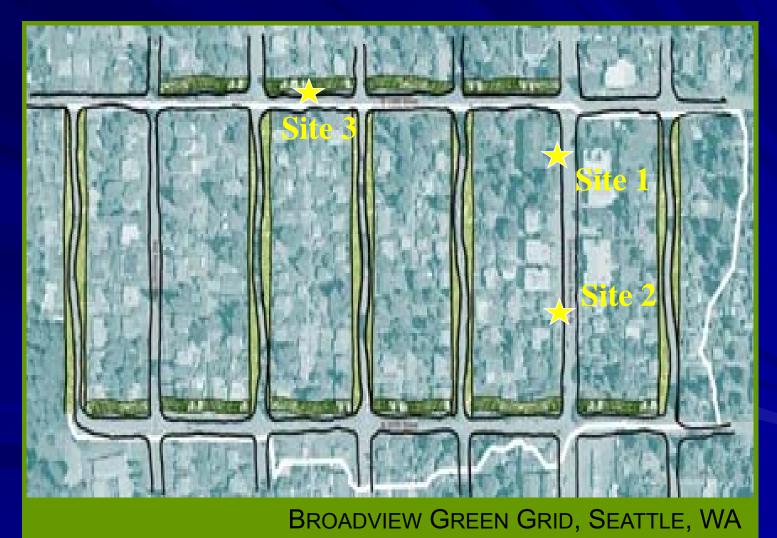
- Tree preservation
- Site Slopes
 - Cross & Longitudinal Slopes
 - Positive Drainage from drainage area to BR to overflow
- Setbacks (e.g., utilities & other infrastructure)
- May require presettling
- retain native vegetation native grass meadow rain storage meado nervious grasses Ikway: pervious dec splash block splash block native/drough pervious drive tolerant plant: rain garden infiltration area rain garde hio-swale/o

LOT LAYOUT, 2012 LID MANUAL

- Public acceptance/ participation (retrofits)
- Transportation/pedestrian safety


NATIVE SOIL CHARACTERIZATION

- Why soils affect siting
- Soil variability
- Initial infiltration rates
- Design infiltration rates



WHY NATIVE SOIL AFFECTS SITING

- Important for Infiltrating facilities ONLY
- Infiltrating facilities sized based on infiltration rates
- Minimum "feasible" initial infiltration rate of 0.3 in/hr

NATIVE SOILS CAN VARY WIDELY!!!!!

Site 1: LOAM

BROADVIEW GREEN GRID, SEATTLE, WA

Site 2: Beach Sand

BROADVIEW GREEN GRID, SEATTLE, WA

SITE 3: GLACIAL TILL (HIGH CLAY CONTENT)

BROADVIEW GREEN GRID, SEATTLE, WA

INFILTRATION RATES

OVERVIEW

Measure or estimate initial saturated hydraulic conductivity

Apply correction factor

Long-term (design) infiltration rate

INITIAL INFILTRATION RATES

Methods

Estimate based on soil properties

- USDA Soil Textural Classification
- Soil Grain Analysis
- In-situ field measurements
 - EPA Falling Head
 - Double ring infiltrometer test
 - Small Scale Pilot Infiltration Test (PIT)
 - Large Scale PIT

Eliminated in 2012 SWWMM

Only accepted for soils unconsolidated by glacial advance in 2012 SWWMM

> Not in SWWMM/ Inaccurate

INITIAL INFILTRATION RATES

Methods

- Estimate based on soil properties
 - USDA Soil Textural Classification
 - Soil Grain Analysis
- In-situ field measurements
 - EPA Falling Head
 - Double ring infiltrometer test
 - <u>Small Scale Pilot Infiltration Test (PIT)</u>
 - Large Scale PIT

Use for all other soils

Use for soils unconsolidated by glacial advance

ECOLOGY SMALL SCALE PIT METHOD

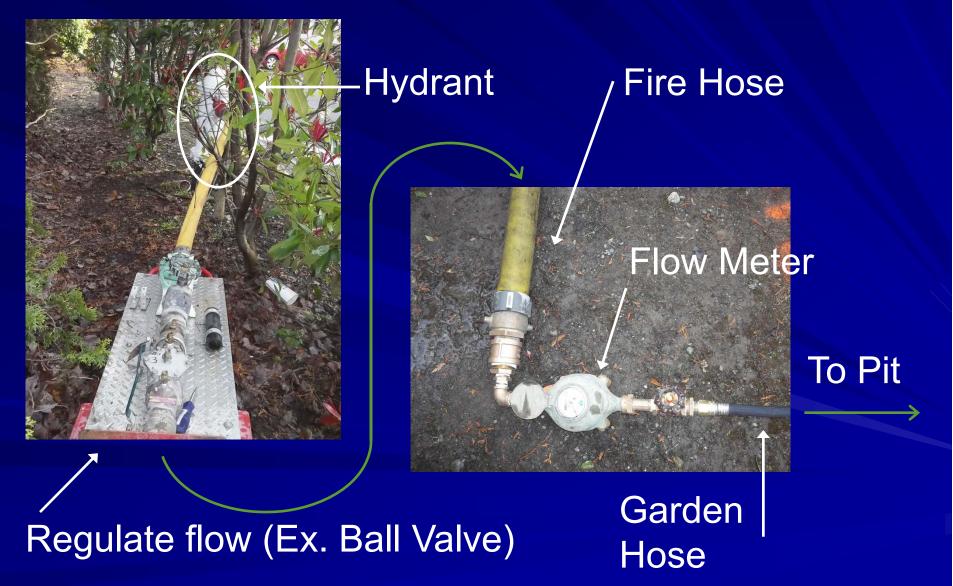
Excavate Pit

- Depth ~ surface elevation of native soil (before BSM placement)
- Horizontal bottom area ~ 12 to 32 sf
- Side slopes laid back, but vertical for test ponding depth (6 12in)
- Install Vertical Measuring Rod
- Install Splash Plate
 - Reduce side wall erosion and disturbance of bottom (clogging)
- Fill Pit for Pre-Soak Period
 - Standing water (at least 12 inches) for 6 hours
- Adjust Flow Rate for Steady State Period
 - Constant water depth (6 12 inches) for 1 hour
- Turn off Water and Record Rate of Infiltration
 - Until Empty

ECOLOGY SMALL SCALE PIT METHOD (CONTINUED)

Depth to Groundwater

- Over excavate 3 feet below pit bottom to check for hydraulic restrictive layers (e.g., bed rock, till/clay lenses) or groundwater
- Alternatively, monitor groundwater through wet season


PIT Timing

Test between December 1 and April 1

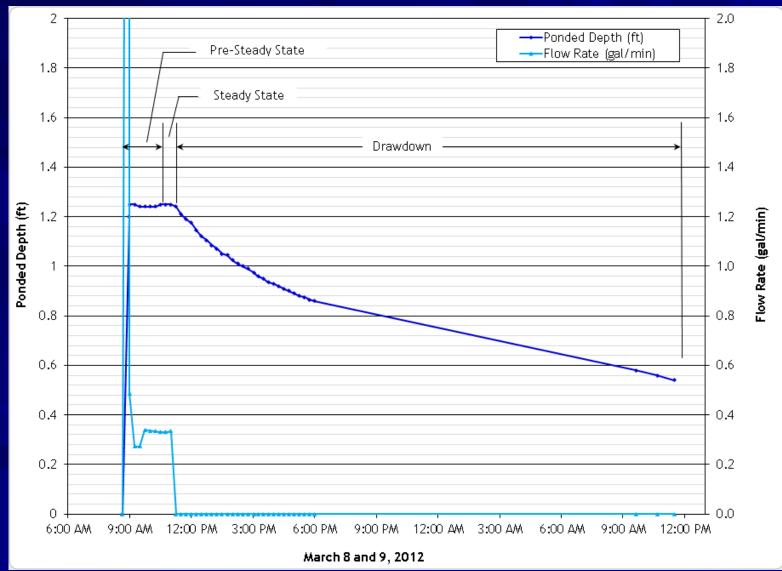
Number of PITs

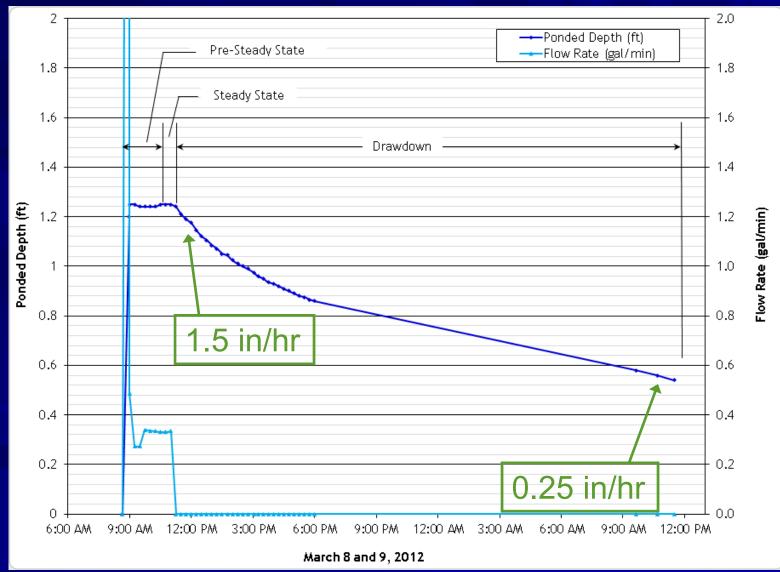
- Recommend one PIT at each bioretention site
- For larger site, one PIT every 5,000 sf
- For long narrow facilities, one PIT every 200 lineal feet (unless borings indicate consistent soil characteristics)

PIT EXAMPLE

PIT EXAMPLE

Pit (lay back side slopes)


Vertical Measuring Rod


5 gal. Bucket (energy dissipation)

Water level recorded every 15 minutes

PIT EXAMPLE

PIT Example

Design Infiltration Rates

CALCULATE FROM INITIAL RATES

- Correction factors applied to <u>initial</u> rate to estimate <u>long-term</u> rate for design
- Correction factors:
 - Site variability and number of locations tested = 0.33 to 1
 - Degree of influent control to prevent siltation and bio-buildup = none required (overlying BSM provides excellent protection)
- Design rate = Initial Rate x CF (0.33 to 1)

Additional Site Characterization

Seasonal High Groundwater

- Monitoring well or excavated pit
- Assess during wet season
- Groundwater Mounding Analysis
 - For drainage area > 1 acre contributing to one facility
- Soil Characterization
 - Grain size analysis

SITE CHARACTERIZATION LESSONS LEARNED

BALLARD ROADSIDE RAIN GARDENS, SPU

- Bioretention pilot for CSO control
- Funded by stimulus money \rightarrow fast timeline
- Many rain gardens not draining
 - Poorly infiltrating soils
 - Perched/mounded groundwater
 - Springs
- What went wrong:
 - Communication/Public Involvement Strategy
 - Site Characterization -
 - Design
 - Construction Practices

Final geotech report not complete until after 90% design

SITE CHARACTERIZATION LESSONS LEARNED

28th Ave NW between NW 65th & 67th St Raingarden Post-Construction Performance Infiltrating (drains in < 24 hours) Not infiltrating or infiltrating very slowly

SITE CHARACTERIZATION LESSONS LEARNED

Lessons from SPU

- Be aware of the level of data required vs risk and costs
- Consider potential of GW mounding on top of glacial till
 - Indicators of high seasonal GW: seeps, wet pavement, saturated planting strips
 - Ask community about evidence of GW springs, basement flooding
- Timing of subsurface evaluation
 - Clearly communicate risks of accelerating schedule
 - Include formal geotech review at 30% design
 - Leave time for 2nd round of tests if 1st round indicates high variability
- Measured infiltration rate
 - < 0.75 in/hr \rightarrow conduct more in-depth subsurface evaluation
 - 0.25 0.75 in/hr \rightarrow redundant design (e.g., underdrains)
 - <0.25 in/hr \rightarrow infiltrate?

FEASIBILITY

NOT SOLUTION FOR EVERY SITE

- Grade < 8%</p>
- Positive grade from drainage to BMP to overflow

Bioretention with infiltration also subject to:

- Infiltration restrictions and setbacks
- Minimum vertical separation to GW/impermeable layer*

* New permit feasibility criteria: Vertical separation of 3 feet for larger contributing areas is only allowed as proof of infeasibility when contributing area cannot reasonably be broken down into smaller areas

Performance

STANDARDS

Flow Control:

- Non Exempt Receiving Water (Most Creek Basins) Ecology requirement to match the peaks and duration to predeveloped condition (usually forest)
- Combined Sewer or Capacity Constrained Basins-Local requirements are typically peak-control based

Water Quality:

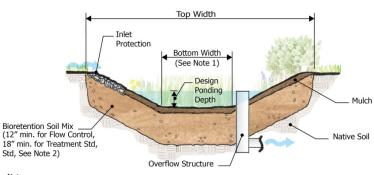
Infiltrate 91 percent of the total runoff volume through soil meeting Ecology treatment criteria

Performance

CAPABILITIES

Bioretention with Infiltration

- Full Flow Control (with permeable soils)
- Full Treatment (with 18" BRS)*

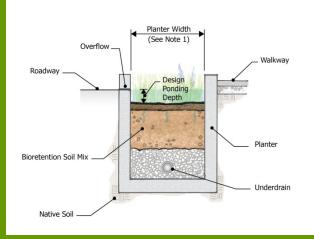

Bioretention without Infiltration

(e.g., underdrain & liner/impermeable reservoir)

- Partial Flow Control
- Full Treatment

(with 18" BRS)*

* Meets basic & enhanced treatment when infiltrates through soil meeting Ecology treatment soil requirements



Notes:

1. Bottom width shall be a minimum of 2 feet and bottom area shall be flat (0% slope).

2. Imported bioretention soil shall meet City of Seattle specifications (minimum design infiltration rate of 3 inches per hour and 40% porosity).

BIORETENTION

PLANTER WITH UNDERDRAIN

APPLICABILITY

Settings

Residential Parcels

- Landscaped areas
- Planters

Commercial Parcels

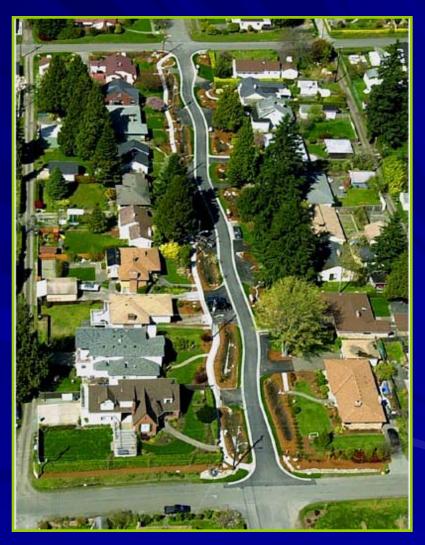
- Landscaped areas
- Planters
- Parking Lots

- Right-of-Way
 - Planting strip
 - Curb bulbs
 - Medians

SINGLE FAMILY

Raingardens

SINGLE FAMILY


STORMWATER PLANTERS

RESIDENTIAL RIGHT-OF-WAY

SEATTLE SEASTREETS

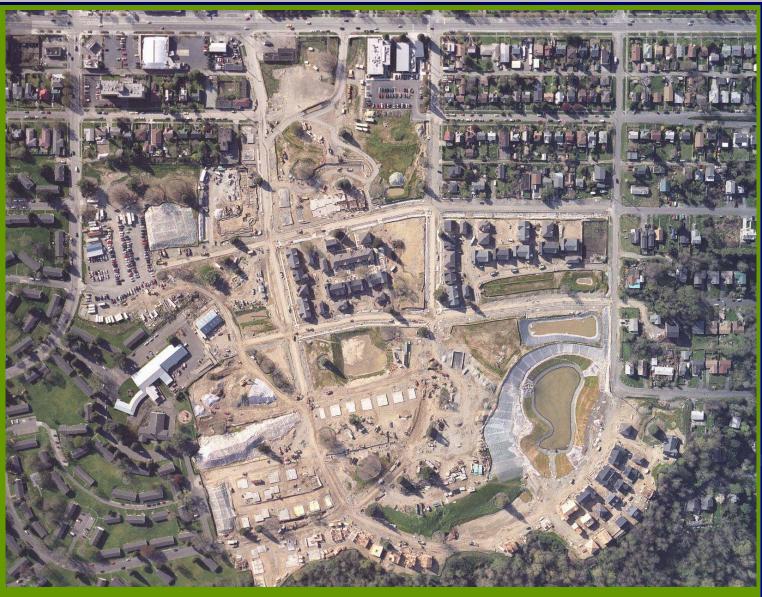
Before

After

RESIDENTIAL RIGHT-OF-WAY

SEATTLE SEASTREETS

Residential Right-of-Way


CURB BULBS

NE Siskiyou Green Street Portland, OR

23rd Ave SE & 171st Pl SE

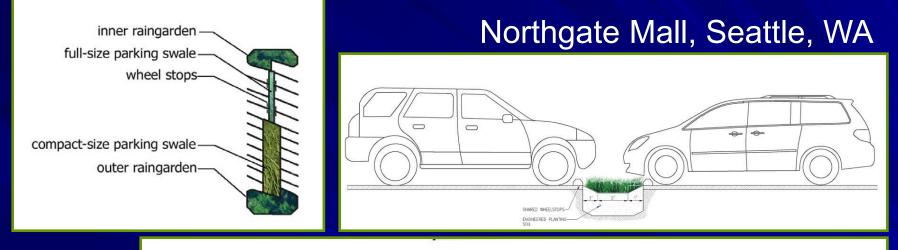
BLOCK-LEVEL DESIGN

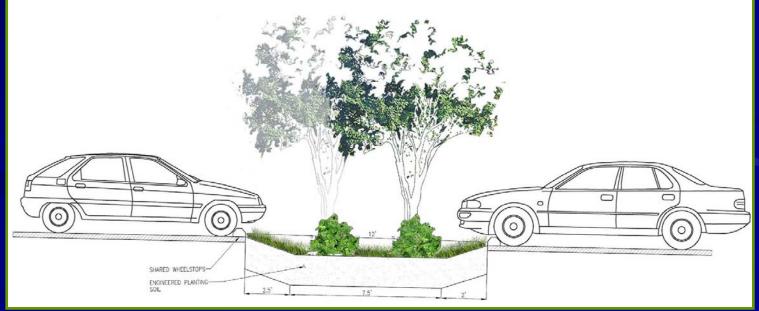
BLOCK-LEVEL DESIGN

BLOCK-LEVEL DESIGN

CONVEYANCE

Downtown CSO Demand Management, Seattle, WA


Parking Lots



Northgate Mall, Seattle, WA

Parking Lots – Telescope Swale Details

Parking Lots

Lewis Creek Park, Bellevue, WA

Combining Landscape Requirements with Bioretention

Commercial Parcels

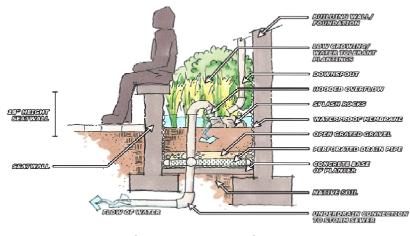
Parking Lots

Combining Conveyance with Bioretention

Bagley Elementary, Seattle, WA

RAIN GARDENS

YMCA Silverdale, WA



Villanova Campus

STORMWATER PLANTERS

13-86° WIDTH

DOWNTOWN CSO DEMAND MANAGEMENT, SEATTLE, WA

RIGHT-OF-WAY

Portland's Green Streets

NEW SEASONS MARKET, PORTLAND

Photos courtesy of Kevin Perry, BES

SW 12TH AVENUE GREEN ST

CONTACT INFORMATION

ALICE LANCASTER, PE

alancaster@herrerainc.com http://www.herrerainc.com/ phone: 206-441-9080

