Milwaukee Foot Model

Presented by: Peter Smith M.D, Joseph Krzak PT, PhD, PCS Adam Graf, M.S.

Milwaukee Foot Model Marker Set

Marker Number	Marker Name	Description
1	MSAT	Medial superior anterior tibia
2	MMAL	Medial malleolus
3	LMAL	Lateral malleolus
4	TCAL	Calcaneal tuberosity
5	MCAL	Medial calcaneus
6	LCAL	Lateral calcaneus
7	T5ML	Tuberosity of the 5 th metatarsal laterally
8	MH1M	Medial Head of the 1 st metatarsal
9	LH5M	Lateral head of the 5 th metatarsal
10	XHAL	Hallux triad x-axis
11	YHAL	Hallux triad y-axis
12	ZHAL	Hallux triad z-axis

Multiple Foot Segments

- Marker-based segmental definition of foot
 - Tibia
 - Hindfoot
 - Forefoot
 - Hallux
- Compare to traditional SLEM model of foot

Definition of Joints

Euler Angles

- Euler's Rotation Theorem
 - Any rotation can be described by three angles
- Distal segment D is "transformed" from alignment with a proximal segment P via a sequence of three order-specific rotations about local axes
 - 1: Sagittal (R_y)
 - 2: Coronal (R_x)
 - 3: Transverse (R_z)

 $D = P \cdot R_{v} \cdot R_{x} \cdot R_{z}$

Bone-Based Axes

- Hindfoot, Forefoot, Hallux
 - A/P view
 - local x vs global X (transverse angle α)
 - Lateral view
 - local x vs global Z (sagittal angle β)
 - Milwaukee view
 - rotation about long axis (HF only)

So Now We Have...

Key Assumption #1

 Assume that the weightbearing posture is repeatable if foot position is repeatable

○ Footprint template

- Trace feet during comfortable standing
- Reference line (foot axis) from calcaneal tuberosity through head of MT2
- Use to position feet for marker- and bonebased axis calibrations
 - Marker-based: motion analysis capture
 - Bone based: weightbearing radiographs

Key Assumption #2

- For each segment, assume a constant relationship between marker-based axes and bone-based axes
- This relationship can be used to transform between axis systems

Segmental Foot and Ankle Analysis

Clinical Applications of the Milwaukee Foot Model

 Identify atypical segmental foot motion during ambulation

 Measure the effectiveness of intervention(s) on improving foot and ankle motion (i.e. play Monday morning quarterback)

• Plan single event multi-segment surgery

Case Examples Hemiplegia with Equinovarus

Hindfoot Kinematics

— Case #2

Forefoot Kinematics

Clinical Applications of the Milwaukee Foot Model

 Identify atypical segmental foot motion during ambulation

 Measure the effectiveness of intervention(s) on improving foot and ankle motion (i.e. play Monday morning quarterback)

• Plan single event multi-segment surgery

Remember This????

 Both patients had a lengthening of the plantar flexors and a split transfer of the posterior tibilais

Case #1 Pre-Post

Case #2 Pre-Post

Case #2 Pre-Post

Transverse Forefoot Kinematics

Clinical Applications of the Milwaukee Foot Model

 Identify atypical segmental foot motion during ambulation

 Measure the effectiveness of intervention(s) on improving foot and ankle motion (i.e. play Monday morning quarterback)

• Plan single event multi-segment surgery

Case Examples Charcot Marie Tooth with Cavovarus

Pre Op Pictures

Problem List – Left Side (Blue) Sagittal Plane

- Hindfoot dorsiflexion
 + forefoot plantar
 flexion = Cavus
- 2. Decreased forefoot dorsiflexion in swing with compensatory hallux dorsiflexion

Problem List – Left Side (Blue) Coronal Plane

A. Hindfoot inversion
 (varus) with compensatory
 forefoot valgus during
 stance

4. Hindfoot inversion and forefoot varus at toe-off and throughout swing (supination)

Problem List – Left Side (Blue) Transverse Plane

 Persistent forefoot adduction throughout the gait cycle

Summary of Problems

- 1. Hindfoot dorsiflexion + forefoot plantar flexion = Cavus
- 2. Decreased forefoot dorsiflexion in swing with compensatory hallux dorsiflexion
- 3. Hindfoot inversion (varus) with compensatory forefoot valgus during stance
- 4. Hindfoot inversion, forefoot varus at toe-off and throughout swing, and forefoot adduction

Plan of Care

- 1. Hindfoot dorsiflexion + forefoot plantar flexion = Cavus
 - Plantar fascia release
- 2. Decreased forefoot dorsiflexion in swing with compensatory hallux dorsiflexion
 - Jones Transfer
- 3. Hindfoot inversion (varus) with compensatory forefoot valgus during stance
 - Calcaneal (Dwyer) osteotomy
- 4. Hindfoot inversion, forefoot varus at toe-off and throughout swing, and forefoot adduction
 - Split transfer of the anterior tibialis to the cuboid (SPLATT)

Post Op Video

Pre vs. Post Op

Left Pre vs Post

Acknowledgements

- Jason T. Long, Ph.D.
- Haluk Altiok, MD
- Gerald F. Harris, Ph.D., PE

Thank you!